Published July 31, 2023 | Version v20230808
Dataset Open

Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Yearly time-series (2012-2022)

  • 1. OpenGeoHub

Description

This data is part of the Monthly aggregated Water Vapor MODIS MCD19A2 (1 km) dataset. Check the related identifiers section on the Zenodo side panel to access other parts of the dataset.

General Description

The monthly aggregated water vapor dataset is derived from MCD19A2 v061. The Water Vapor data measures the column above ground retrieved from MODIS near-IR bands at 0.94μm. The dataset time spans from 2000 to 2022 and provides data that covers the entire globe. The dataset can be used in many applications like water cycle modeling, vegetation mapping, and soil mapping. This dataset includes:

  • Monthly time-series:
    Derived from MCD19A2 v061, this data provides a monthly aggregated mean and standard deviation of daily water vapor time-series data from 2000 to 2022. Only positive non-cloudy pixels were considered valid observations to derive the mean and the standard deviation. The remaining no-data values were filled using the TMWM algorithm. This dataset also includes smoothed mean and standard deviation values using the Whittaker method. The quality assessment layers and the number of valid observations for each month can provide an indication of the reliability of the monthly mean and standard deviation values.
  • Yearly time-series:
    Derived from monthly time-series, this data provides a yearly time-series aggregated statistics of the monthly time-series data.
  • Long-term data (2000-2022):
    Derived from monthly time-series, this data provides long-term aggregated statistics for the whole series of monthly observations.

Data Details

  • Time period: 2012–2022
  • Type of data: Water vapor column above the ground (0.001cm)
  • How the data was collected or derived: Derived from MCD19A2 v061 using Google Earth Engine. Cloudy pixels were removed and only positive values of water vapor were considered to compute the statistics. The time-series gap-filling and time-series smoothing were computed using the Scikit-map Python package.
  • Statistical methods used: Four statistics were derived: standard deviation, percentiles 25, 50, and 75.
  • Limitations or exclusions in the data: The dataset does not include data for Antarctica.
  • Coordinate reference system: EPSG:4326
  • Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.00081, 179.99994, 87.37000)
  • Spatial resolution: 1/120 d.d. = 0.008333333 (1km)
  • Image size: 43,200 x 17,924
  • File format: Cloud Optimized Geotiff (COG) format.

Support

If you discover a bug, artifact, or inconsistency, or if you have a question please use some of the following channels:

Name convention

To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are:

  1. generic variable name: wv = Water vapor
  2. variable procedure combination: mcd19a2v061.seasconv = MCD19A2 v061 with gap-filling algorithm
  3. Position in the probability distribution / variable type: m = mean | sd = standard deviation | n = number of observations | qa = quality assessment
  4. Spatial support: 1km
  5. Depth reference: s = surface
  6. Time reference begin time: 20120101 = 2012-01-01
  7. Time reference end time: 20221231 = 2022-12-31
  8. Bounding box: go = global (without Antarctica)
  9. EPSG code: epsg.4326 = EPSG:4326
  10. Version code: v20230619 = 2023-06-19 (creation date)

Files

00_preview.png

Files (25.2 GB)

Name Size Download all
md5:2fb2fe33ba53040cd8180e1d6d594e78
111.1 kB Preview Download
md5:fe141ea7608f57ca8166658e1a51671a
289.7 MB Preview Download
md5:8f22a7258c134f2f4a6225469f8704b9
294.9 MB Preview Download
md5:ac95536699afb66d87a4d11b5a675569
295.2 MB Preview Download
md5:947e1a70003c6762065b519685b69e1f
296.4 MB Preview Download
md5:7ac0f7a1bd9d81e1bd5622ab529ffc84
298.3 MB Preview Download
md5:57472343f198abe4d532f9de41dc8e25
297.3 MB Preview Download
md5:612e55c3ec301efa10b2ed3a58fa7353
277.2 MB Preview Download
md5:08c120e340fbc0234e6f404ae960508f
297.6 MB Preview Download
md5:ca662d6e40e2ab6ecb08683b6af6b7c5
298.7 MB Preview Download
md5:c2e1e72c3f5e8a66d5a6b6dbebddaa16
297.5 MB Preview Download
md5:1c8ff9ed3c9909879dea15cafcae50da
298.2 MB Preview Download
md5:052ea77f10c39296dca85232e93b9557
313.2 MB Preview Download
md5:5a01207f271b04a6a7fa13fba4c0a776
313.2 MB Preview Download
md5:6841d62cf83957b10332b2986870ad72
314.5 MB Preview Download
md5:ecc142921ff2a780eac8240aa0b6a376
315.0 MB Preview Download
md5:9b35933add618bd5dbc0ea85691189ea
318.2 MB Preview Download
md5:ebbbbd61faf24e666d78c8d3f8405e7d
316.2 MB Preview Download
md5:15b20bb9d79d382603b62dc285851c34
297.0 MB Preview Download
md5:11cbe186d8a6b90a2aa6413339919481
317.2 MB Preview Download
md5:6c07af0232545f5e841fc6494c87e661
317.0 MB Preview Download
md5:e5f64203406aac1b80a61622a4ba45c2
316.2 MB Preview Download
md5:299a437630ad3ef4e0ebdea855123ee3
318.9 MB Preview Download
md5:edbee6fa78e53fd8fab7dc967d2585fc
332.5 MB Preview Download
md5:6ba8ddc6fc45119dbd50bcdf115cf907
334.4 MB Preview Download
md5:8ff16c37116a00582e0125c6b6e83cee
334.1 MB Preview Download
md5:fe40646f4f1cde7f9d4200361f0aefd6
334.9 MB Preview Download
md5:bde8b49cb61a9bd7e6e0e2d98d1bb74c
337.5 MB Preview Download
md5:fe6e1e4152ccba004f6ecc1b53a45ae0
336.8 MB Preview Download
md5:42a11729743b56c37b4232ca533a008a
318.1 MB Preview Download
md5:ce51ccb48791d16b9e1ee8117ac02539
337.9 MB Preview Download
md5:d73363c49aeb08c7c11a616628acbd23
338.3 MB Preview Download
md5:21c53217e8cdc08edf411cc8d3515282
337.0 MB Preview Download
md5:883dce826903e0b89bbb6923167ce731
338.1 MB Preview Download
md5:dfaf3c1dfa0277a2571f719a9aa2496e
285.9 MB Preview Download
md5:8ef67a4c9f8e845288de3056fb976f3c
287.7 MB Preview Download
md5:a1836afc104ddbeb5dcd7aa3bf90d195
286.4 MB Preview Download
md5:d6beb8bd9d61dfee35a8387ebb7a2bb0
287.7 MB Preview Download
md5:6b5137e2e6c9e19ab3e9bcbbee7035cb
291.5 MB Preview Download
md5:603221dc285c6da10953c8d8b18e22fd
292.0 MB Preview Download
md5:696220d6addad84a66843bc05ee2dc06
262.4 MB Preview Download
md5:49ba7ada42685b7960c1584834107327
291.1 MB Preview Download
md5:38c371c9fc2a31edea0194ebcfc2af51
295.2 MB Preview Download
md5:dc30b351b1c0ce7e7de88860518e0dbe
293.2 MB Preview Download
md5:1f9146150353b9af4ae7b9944b9c5b9c
294.8 MB Preview Download
md5:13b78e2d577cc4823d96db753c54c63b
247.8 MB Preview Download
md5:4ba1312f7efe5b9a494f9ab63b94dc5a
251.7 MB Preview Download
md5:af37a4a1027b37ccf3d6f1ab7bd23692
252.0 MB Preview Download
md5:f6b7ec07185a0537f6cd3f1c2ca30655
254.7 MB Preview Download
md5:9f76b70d7f30397e6b175c964a7cde44
256.3 MB Preview Download
md5:805925f6fc8df287cce524a33137bfc4
255.8 MB Preview Download
md5:f1b65e89d07782d60b849bfb2096eff2
225.1 MB Preview Download
md5:0ab9c01a71a608e071271b753f415149
257.0 MB Preview Download
md5:24833cdcdd60b2fda63d8c0f7f68ff8b
258.1 MB Preview Download
md5:c2332c823f2e8c59030dd0656d6bcc35
258.6 MB Preview Download
md5:b3944ce6279835614a5551bcde4f72e4
259.9 MB Preview Download
md5:59dc19b67703cf166d1f63a25051ca71
269.2 MB Preview Download
md5:fbe98d5a0e965f81f85b461c8e6bf0c2
272.0 MB Preview Download
md5:7691ed01abf63e09717f30d1cb9951eb
272.0 MB Preview Download
md5:7426a60c4aaf46afe7eb8a287c18ab3f
272.9 MB Preview Download
md5:c5c713d167dfe5ab561aab147143a6a3
277.6 MB Preview Download
md5:2fb0f30593c72f6a4b54d7769b8b4760
276.0 MB Preview Download
md5:1b25487ca41eaae40ec80acda7f56ab9
241.3 MB Preview Download
md5:9c9e22addf8451e011cee93301116dd6
278.3 MB Preview Download
md5:070503f95ac7d44d4506f638ca4eed01
278.0 MB Preview Download
md5:c6fb448118a494b6e7f4fba3554366a0
277.3 MB Preview Download
md5:674de21fea568b57e59ddc1a14862e88
281.2 MB Preview Download
md5:a96392771ada4dfc7910d6e63409b64c
288.7 MB Preview Download
md5:edc9ddb27b56f7c5003646343b73c92b
291.4 MB Preview Download
md5:0ba370e3a608e897b0a14a1bf49608e9
292.0 MB Preview Download
md5:b0a8ea61afa86a4b19711dd00cf30633
292.5 MB Preview Download
md5:78e8621a8fcaf07245bfef3714aa7dbe
296.0 MB Preview Download
md5:a5581ae5b8dfb6db16097d8ba29645e9
296.6 MB Preview Download
md5:7637e1cccb2845d2c0412b05b61071b1
260.0 MB Preview Download
md5:65ce6b12c403b6e2cd04edbc2c8764a8
297.3 MB Preview Download
md5:7edb7bd56d1c78168ede75b154494b72
298.8 MB Preview Download
md5:bd7612a4fb0f4cbd9801df558b4f70ff
297.7 MB Preview Download
md5:07dadeb1d2c89230d4d4c588dd1725c8
299.5 MB Preview Download
md5:7c2ee8aabe9d927ad4c683437ed4c6c2
242.5 MB Preview Download
md5:e45bae05d1a3a5e9d238c28451dc43b3
247.0 MB Preview Download
md5:dbc554fbeb5a1e8554893b3102afc369
245.5 MB Preview Download
md5:08da09c097e3a9822cc764176f8b837a
245.5 MB Preview Download
md5:393aada39aa3d00f70b4364dbf15d080
250.3 MB Preview Download
md5:cbd7b96eb87e091fda40927b710f76d7
251.5 MB Preview Download
md5:c2a122a29990beda280e1a3e79fb0a84
197.0 MB Preview Download
md5:f914e0b9a9d43db3f5e7fe2e61b73772
249.7 MB Preview Download
md5:6886fb4c7d40356e734a534f87b078f6
254.0 MB Preview Download
md5:60e0b1e7e193f78b24805c71d96cd17d
253.1 MB Preview Download
md5:0421aed6d1338cda22d7c3f3032dd183
255.2 MB Preview Download

Additional details

Related works

Continues
Dataset: 10.5281/zenodo.8226292 (DOI)

Funding

European Commission
OEMC - Open-Earth-Monitor Cyberinfrastructure 101059548

Dates

Collected
2012-01-01/2022-12-31
Processed period.