Published April 18, 2023 | Version 1
Journal article Open

Foresight in clinical proteomics: current status, ethical considerations, and future perspectives

  • 1. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
  • 2. Department of Clinical Biochemistry, University Hospital, Bispebjerg Hospital, Bispebjerg, Denmark
  • 3. Faculty of Law, University of Oxford, Oxford, England, UK
  • 4. Max Planck Institute of Biochemistry, Proteomics and Signal Transduction, Martinsried, Germany
  • 5. Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
  • 6. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK

Description

With the advent of robust and high-throughput mass spectrometric technologies and bioinformatics tools to analyze large data sets, proteomics has penetrated broadly into basic and translational life sciences research. More than 95% of FDA-approved drugs currently target proteins, and most diagnostic tests are protein-based. The introduction of proteomics to the clinic, for instance to guide patient stratification and treatment, is already ongoing. Importantly, ethical challenges come with this success, which must also be adequately addressed by the proteomics and medical communities. Consortium members of the H2020 European Union-funded proteomics initiative: European Proteomics Infrastructure Consortium-providing access (EPIC-XS) met at the Core Technologies for Life Sciences (CTLS) conference to discuss the emerging role and implementation of proteomics in the clinic. The discussion, involving leaders in the field, focused on the current status, related challenges, and future efforts required to make proteomics a more mainstream technology for translational and clinical research. Here we report on that discussion and provide an expert update concerning the feasibility of clinical proteomics, the ethical implications of generating and analyzing large-scale proteomics clinical data, and recommendations to ensure both ethical and effective implementation in real-world applications.

Files

openreseurope-3-17080.pdf

Files (552.6 kB)

Name Size Download all
md5:33f4c11cfa4fe016bf3e0071c2b548c2
552.6 kB Preview Download

Additional details

References

  • Wang J, Ma Z, Carr SA (2017). Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction. Mol Cell Proteomics. doi:10.1074/mcp.M116.060301
  • Santos R, Ursu O, Gaulton A (2017). A comprehensive map of molecular drug targets. Nat Rev Drug Discov. doi:10.1038/nrd.2016.230
  • Geyer PE, Holdt LM, Teupser D (2017). Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. doi:10.15252/msb.20156297
  • Mischak H, Ioannidis JPA, Argiles A (2012). Implementation of proteomic biomarkers: making it work. Eur J Clin Invest. doi:10.1111/j.1365-2362.2012.02674.x
  • Oberg AL, Vitek O (2009). Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. doi:10.1021/pr8010099
  • Dogu E, Taheri SM, Olivella R (2019). MSstatsQC 2.0: R/Bioconductor Package for Statistical Quality Control of Mass Spectrometry-Based Proteomics Experiments. J Proteome Res. doi:10.1021/acs.jproteome.8b00732
  • Ding LJ, Schlüter HM, Szucs MJ (2020). Comparison of Statistical Tests and Power Analysis for Phosphoproteomics Data. J Proteome Res. doi:10.1021/acs.jproteome.9b00280
  • Bader JM, Geyer PE, Müller JB (2020). Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease. Mol Syst Biol. doi:10.15252/msb.20199356
  • Kennedy JJ, Whiteaker JR, Ivey RG (2022). Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Anal Chem. doi:10.1021/acs.analchem.1c04382
  • Niu L, Thiele M, Geyer PE (2022). Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat Med. doi:10.1038/s41591-022-01850-y
  • Mc Ardle A, Binek A, Moradian A (2022). Standardized Workflow for Precise Mid- and High-Throughput Proteomics of Blood Biofluids. Clin Chem. doi:10.1093/clinchem/hvab202
  • van Bentum M, Selbach M (2021). An Introduction to Advanced Targeted Acquisition Methods. Mol Cell Proteomics. doi:10.1016/j.mcpro.2021.100165
  • Willrich MA, Katzmann JA (2016). Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med. doi:10.1515/cclm-2015-0580
  • Mertins P, Mani DR, Ruggles KV (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. doi:10.1038/nature18003
  • Gillette MA, Satpathy S, Cao S (2020). Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell. doi:10.1016/j.cell.2020.06.013
  • Johansson HJ, Socciarelli F, Vacanti NM (2019). Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun. doi:10.1038/s41467-019-09018-y
  • Krug K, Jaehnig EJ, Satpathy S (2020). Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell. doi:10.1016/j.cell.2020.10.036
  • Archer TC, Ehrenberger T, Mundt F (2018). Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. doi:10.1016/j.ccell.2018.08.004
  • Eckert MA, Coscia F, Chryplewicz A (2019). Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. doi:10.1038/s41586-019-1173-8
  • Demichev V, Tober-Lau P, Lemke O (2021). A time-resolved proteomic and prognostic map of COVID-19. Cell Syst. doi:10.1016/j.cels.2021.05.005
  • Geyer PE, Arend FM, Doll S (2021). High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol Med. doi:10.15252/emmm.202114167
  • Völlmy F, van den Toorn H, Chiozzi RZ (2021). A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci Alliance. doi:10.26508/lsa.202101099
  • Messner CB, Demichev V, Wendisch D (2020). Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. doi:10.1016/j.cels.2020.05.012
  • Čaval T, Lin YH, Varkila M (2021). Glycoproteoform Profiles of Individual Patients' Plasma Alpha-1-Antichymotrypsin are Unique and Extensively Remodeled Following a Septic Episode. Front Immunol. doi:10.3389/fimmu.2020.608466
  • Doll S, Kriegmair MC, Santos A (2018). Rapid proteomic analysis for solid tumors reveals LSD1 as a drug target in an end-stage cancer patient. Mol Oncol. doi:10.1002/1878-0261.12326
  • Doll S, Gnad F, Mann M (2019). The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine. Proteomics Clin Appl. doi:10.1002/prca.201800113
  • Fierro-Monti I, Wright JC, Choudhary JS (2022). Identifying individuals using proteomics: are we there yet?. Front Mol Biosci. doi:10.3389/fmolb.2022.1062031
  • Bandeira N, Deutsch EW, Kohlbacher O (2021). Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Mol Cell Proteomics. doi:10.1016/j.mcpro.2021.100071
  • Keane TM, O'Donovan C, Vizcaino JA (2021). The growing need for controlled data access models in clinical proteomics and metabolomics. Nat Commun. doi:10.1038/s41467-021-26110-4
  • Geyer PE, Albrechtsen NJW, Tyanova S (2016). Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. doi:10.15252/msb.20167357
  • Schandorff S, Olsen JV, Bunkenborg J (2007). A mass spectrometry-friendly database for cSNP identification. Nat Methods. doi:10.1038/nmeth0607-465
  • Bondt A, Hoek M, Tamara S (2021). Human plasma IgG1 repertoires are simple, unique, and dynamic. Cell Syst. doi:10.1016/j.cels.2021.08.008
  • Deutsch EW, Bandeira N, Sharma V (2020). The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. Nucleic Acids Res. doi:10.1093/nar/gkz984
  • Perez-Riverol Y, Bai J, Bandla C (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. doi:10.1093/nar/gkab1038
  • Caufield JH, Fu J, Wang D (2021). A Second Look at FAIR in Proteomic Investigations. J Proteome Res. doi:10.1021/acs.jproteome.1c00177
  • Barrett T, Wilhite SE, Ledoux P (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. doi:10.1093/nar/gks1193
  • Sarkans U, Füllgrabe A, Ali A (2021). From ArrayExpress to BioStudies. Nucleic Acids Res. doi:10.1093/nar/gkaa1062
  • Mann SP, Treit PV, Geyer PE (2021). Ethical principles, opportunities and constraints in clinical proteomics. Mol Cell Proteomics. doi:10.1074/mcp.RA120.002435
  • Geyer PE, Mann SP, Treit PV (2021). Plasma proteomes can be reidentifiable and potentially contain personally sensitive and incidental findings. Mol Cell Proteomics. doi:10.1074/mcp.RA120.002359
  • Daly MB (2020). Navigating the Intersection between Genomic Research and Clinical Practice. Cancer Prev Res (Phila). doi:10.1158/1940-6207.CAPR-19-0267
  • Saelaert M, Mertes H, De Baere E (2018). Incidental or secondary findings: an integrative and patient-inclusive approach to the current debate. Eur J Hum Genet. doi:10.1038/s41431-018-0200-9