There is a newer version of the record available.

Published August 4, 2023 | Version Update data (August 4, 2023)
Dataset Open

SinoLC-1: the first 1-meter resolution national-scale land-cover map of China created with the deep learning framework and open-access data (Update data: August, 2023)

  • 1. Wuhan University
  • 2. China University of Geosciences

Description

The Update data (August 2023) of the SinoLC-1 land-cover product. The SinoLC-1 was created by the Low-to-High Network (L2HNet), which can be found at: L2HNet. A more detailed description of the data can be found in the paper. More related work can be found on my homepage.

Click to check all the data versions and download the data (点击查看/下载所有数据版本)

NOTE: If you have any data needs, questions, or technical issues, contact us at ashelee@whu.edu.cn (Zhuohong Li, 李卓鸿).

The land-cover mapping method with Python code is open-access at Code link. You can now update the high-resolution land-cover map by yourself with the code! The updated method is accepted by CVPR 2024 (Paper link).

我们的最新制图算法被计算机视觉顶会CVPR2024接收(Paper link),代码开源在:Code link,您可以利用该代码高效地更新自己数据集的高分土地覆盖图。

Citation format of the paper:
Li, Z., He, W., Cheng, M., Hu, J., Yang, G., and Zhang, H.: SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data, Earth Syst. Sci. Data, 15, 4749–4780, 2023. 

Li, Z., Zhang, H., Lu, F., Xue, R., Yang, G. and Zhang, L.: Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels, ISPRS Journal of Photogrammetry and Remote Sensing. 192, pp.244-267, 2022.

BibTex format of the paper:

@article{li2023sinolc,
  title={SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data},
  author={Li, Zhuohong and He, Wei and Cheng, Mofan and Hu, Jingxin and Yang, Guangyi and Zhang, Hongyan},
  journal={Earth System Science Data},
  volume={15},
  number={11},
  pages={4749--4780},
  year={2023},
  publisher={Copernicus Publications G{\"o}ttingen, Germany}
}
@article{li2022breaking,
  title={Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels},
  author={Li, Zhuohong and Zhang, Hongyan and Lu, Fangxiao and Xue, Ruoyao and Yang, Guangyi and Zhang, Liangpei},
  journal={ISPRS Journal of Photogrammetry and Remote Sensing},
  volume={192},
  pages={244--267},
  year={2022},
  publisher={Elsevier}
}

Files

Image_capture_time.tif

Files (3.8 GB)

Name Size Download all
md5:45baaa4b62bc08780f5f9160fe13dc43
262.6 kB Preview Download
md5:606c70830109326f671c38a035322e69
957.0 MB Preview Download
md5:caceb047676186d87ccf6148262f93fd
555.5 MB Preview Download
md5:595288bb3d830a64fd14c504e9cc4f15
1.1 GB Preview Download
md5:f23718a8c2d0e7d294910db4f598df3b
1.1 GB Preview Download
md5:d43c6243a445361f0523416fc599eb4c
7.3 MB Preview Download
md5:d43c6243a445361f0523416fc599eb4c
7.3 MB Preview Download

Additional details

Related works

Is cited by
Preprint: 10.5194/essd-2023-87 (DOI)
Is supplemented by
Journal article: 10.1016/j.isprsjprs.2022.08.008 (DOI)