Published July 24, 2023 | Version 1.0
Project deliverable Open

D5.7 Update of review of state-of-the-art for Pricing and Computation of VaR

  • 1. CESGA
  • 2. Universidade da Coruña
  • 3. HSBC

Description

Derivatives contracts are one of the fundamental pillars of modern financial markets and are routinely traded by both financial institutions and traders with a variety of objectives, such as financial risk hedging. For this reason, the fair valuation of financial derivatives, known as pricing, and the computation of various risk measures, such as the Value at Risk (VaR), have become two of the tasks that consume a great amount of computational resources in financial institutions.

Classically, the problems of derivatives pricing and the computation of VaR are mainly solved by means of Monte Carlo-simulation (MC) techniques or numerical algorithms for solving partial differential equations (PDE). The key advantage of MC technique is that it is easy to implement, very general and scales well with the dimension of the problem. Therefore, it has become the de facto standard by financial institutions to tackle both problems.

In this context, NExt ApplicationS of Quantum Computing (NEASQC) Use Case 5 (UC5) works on the de-velopment and evaluation of quantum algorithms for derivatives pricing and VaR problems. Inspired by the aforementioned classical algorithms, the quantum computing community has developed different strategies to speed up the classical techniques.
This report summarises the advances on derivatives pricing and the computation of VaR since the publication of the deliverable D5.3 review. The report is divided in three main sections. The first section corresponds to the main line of research on quantum computing for pricing and VaR, namely, Quantum Accelerated Monte Carlo (QAMC). This technique promises to be as flexible and general as its classical counterpart while requiring quadratically fewer computational steps. The second section corresponds to quantum algorithms for solving Partial Differential Equations (PDEs). In this case it is possible to find some methods that promise to obtain even exponential speedups. However, such speedups can only be attained for very specific cases which makes it less attractive for practitioners. The last section is devoted to different techniques which do not fall in the previous two categories. Thus, we include recent advances on quantum machine learning techniques applied to finance, financial modeling via quantum mechanics and quantum assets.

It is important to note that some of the proposed techniques require far more quantum computational resources than are currently available. This includes limitations in the number of qubits, in the depth of the circuits and in the levels of “noise”. Hence, the current deliverable pays special focus to quantum algorithms in Noisy Intermediate-Scale Quantum (NISQ) computers.

Files

NEASQC_D5.7_Update_Quantum_computing_for_derivative_pricing_and_VaR - vF.pdf

Additional details

Funding

European Commission
NEASQC – NExt ApplicationS of Quantum Computing 951821

References

  • Abrams, D. S., & Williams, C. P. (1999). Fast quantum algorithms for numerical integrals and stochastic processes.
  • Agliardi, G., & Prati, E. (2022a). Optimal tuning of quantum generative adversarial networks for multivariate distri- bution loading. Quantum Reports, 4(1), 75–105.
  • Agliardi, G., & Prati, E. (2022b). Optimized quantum generative adversarial networks for distribution loading. 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 824–827.
  • Araujo, I. F., Blank, C., & da Silva, A. J. (2021). Approximated quantum-state preparation with entanglement depen- dent complexity. arXiv preprint arXiv:2111.03132.
  • Araujo, I. F., Park, D. K., Ludermir, T. B., Oliveira, W. R., Petruccione, F., & da Silva, A. J. (2021). Configurable sublinear circuits for quantum state preparation. https://doi.org/10.1007/s11128-023-03869-7
  • Araujo, I. F., Park, D. K., Petruccione, F., & da Silva, A. J. (2021). A divide-and-conquer algorithm for quantum state preparation. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-85474-1
  • Ashhab, S. (2022). Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register's wave function. Physical Review Research, 4(1), 013091.
  • Baaquie, B. E. (2019). Merton's equation and the quantum oscillator ii: Option pricing. Physica A: Statistical Me- chanics and its Applications, 532, 121792. https://doi.org/https://doi.org/10.1016/j.physa.2019.121792
  • Baaquie, B. E. (2020). Merton's equation and the quantum oscillator i: Risky coorporate coupon bonds. Physica A: Statistical Mechanics and its Applications, 541, 123367. https://doi.org/https://doi.org/10.1016/j.physa.2019. 123367
  • Bao, J., & Rebentrost, P. (2022). Fundamental theorem for the pricing of quantum assets.
  • Bausch, J. (2022). Fast black-box quantum state preparation. Quantum, 6, 773.
  • Berry, D., Childs, A., Ostrander, A., & Wang, G. (2017). Higher order quantum algorithms for solving linear differen- tial equations. Journal of Physics, A, 47(10), 105301.
  • Brassard, G., Høyer, P., Mosca, M., & Tapp, A. (2002). Quantum amplitude amplification and estimation. https : //doi.org/10.1090/conm/305/05215
  • Brown, E. G., Goktas, O., & Tham, W. K. (2020). Quantum amplitude estimation in the presence of noise. https: //doi.org/10.48550/ARXIV.2006.14145
  • Buehler, H., Gonon, L., Teichmann, J., & Wood, B. (2019). Deep hedging. Quantitative Finance, 19(8), 1271–1291.
  • Callison, A., & Browne, D. E. (2022). Improved maximum-likelihood quantum amplitude estimation. https://doi.org/ 10.48550/ARXIV.2209.03321
  • Certo, S., Pham, A. D., & Beaulieu, D. (2022). Benchmarking amplitude estimation on a superconducting quantum computer. https://doi.org/10.48550/ARXIV.2201.06987
  • Chang, Y.-J., Wang, W.-T., Chen, H.-Y., Liao, S.-W., & Chang, C.-R. (2023). Preparing random state for quantum financing with quantum walks. https://doi.org/10.48550/ARXIV.2302.12500
  • Chefles, A., Jozsa, R., & Winter, A. (2004). On the existence of physical transformations between sets of quantum states. International Journal of Quantum Information, 02(01), 11–21.
  • Creevey, F. M., Hill, C. D., & Hollenberg, L. C. L. (2023). Gasp – a genetic algorithm for state preparation. https: //doi.org/10.48550/ARXIV.2302.11141
  • Dalal, A., & Katabarwa, A. (2022). Noise tailoring for robust amplitude estimation. https://doi.org/10.48550/ARXIV. 2208.11797
  • Dasgupta, K., & Paine, B. (2022). Loading probability distributions in a quantum circuit. arXiv preprint arXiv:2208.13372.
  • Egger, D. J., Guti´errez, R. G., Mestre, J. C., & Woerner, S. (2020). Credit risk analysis using quantum computers. IEEE Transactions on Computers.
  • El Amine Cherrat, e. a. (2023). Quantum deep hedging [arXiv:2023.16585v1]. Fukuzawa, S., Ho, C., Irani, S., & Zion, J. (2023). Modified iterative quantum amplitude estimation is asymptotically optimal. In 2023 proceedings of the symposium on algorithm engineering and experiments (alenex) (pp. 135–147). https://doi.org/10.1137/1.9781611977561.ch12
  • Gabor, T., Zorn, M., & Linnhoff-Popien, C. (2022). The applicability of reinforcement learning for the automatic generation of state preparation circuits. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2196–2204.
  • Gily´en, A., Su, Y., Low, G. H., & Wiebe, N. (2019). Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204. https://doi.org/10.1145/3313276.3316366
  • Giurgica-Tiron, T., Kerenidis, I., Labib, F., Prakash, A., & Zeng, W. (2022). Low depth algorithms for quantum amplitude estimation. Quantum, 6, 745. https://doi.org/10.22331/q-2022-06-27-745
  • Gleinig, N., & Hoefler, T. (2022). Circuits for measurement based quantum state preparation. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 328–333.
  • Gomez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordo´ ˜nez, G., & V´azquez, C. (2022). A survey on quantum computational finance for derivatives pricing and VaR. Archives of Computational Methods in En-gineering, 29, 4137–4163. https://doi.org/10.1007/s11831-022-09732-9
  • Gonzalez-Conde, J., Marin-Sanchez, G., & Sanz, M. (2023). Quantum algorithms for approximate function loading. Bulletin of the American Physical Society.
  • Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2021). Iterative quantum amplitude estimation. npj Quantum Infor- mation, 7(1). https://doi.org/10.1038/s41534-021-00379-1
  • Grover, L., & Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability distri- butions. https://doi.org/10.48550/ARXIV.QUANT-PH/0208112
  • Grover, L. K. (2000). Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett., 85, 1334–1337. https://doi.org/10.1103/PhysRevLett.85.1334
  • Han, J. Y., & Rebentrost, P. (2022). Quantum advantage for multi-option portfolio pricing and valuation adjustments. https://doi.org/10.48550/ARXIV.2203.04924
  • Herbert, S., Guichard, R., & Ng, D. (2021). Noise-aware quantum amplitude estimation. https://doi.org/10.48550/ ARXIV.2109.04840
  • Iaconis, J., Johri, S., & Zhu, E. Y. (2023). Quantum state preparation of normal distributions using matrix product states. https://arxiv.org/abs/2303.01562
  • Johri, S., Iaconis, J., & Zhu, E. (2023). Experimental loading of normal probability distributions to quantum states. Bulletin of the American Physical Society.
  • Koh, D. E., Wang, G., Johnson, P. D., & Cao, Y. (2022). Foundations for bayesian inference with engineered likelihood functions for robust amplitude estimation. Journal of Mathematical Physics, 63(5), 052202. https://doi.org/10.1063/5.0042433
  • Kubo, K., Miyamoto, K., Mitarai, K., & Fujii, K. (2022). Pricing multi-asset derivatives by variational quantum algo- rithms. https://doi.org/10.48550/ARXIV.2207.01277
  • Li, Y., & Neufeld, A. (2023). Quantum monte carlo algorithm for solving black-scholes pdes for high-dimensional option pricing in finance and its proof of overcoming the curse of dimensionality.
  • Lu, X., & Lin, H. (2023). Random-depth quantum amplitude estimation. https://doi.org/10.48550/ARXIV.2301.00528
  • Manzano, A., Musso, D., & Leitao, ´A. (2022). Real quantum amplitude estimation. https://doi.org/10.48550/ARXIV. 2204.13641
  • McArdle, S., Gily´en, A., & Berta, M. (2022). Quantum state preparation without coherent arithmetic. arXiv preprint arXiv:2210.14892.
  • Miyamoto, K. (2022). Bermudan option pricing by quantum amplitude estimation and chebyshev interpolation. https: //doi.org/10.1140/epjqt/s40507-022-00124-3
  • Miyamoto, K., & Kubo, K. (2022). Pricing multi-asset derivatives by finite-difference method on a quantum computer. IEEE Transactions on Quantum Engineering, 3, 1–25. https://doi.org/10.1109/TQE.2021.3128643
  • Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. https://doi.org/http://doi.org/10.1098/rspa.2015. 0301
  • Moosa, M., Watts, T. W., Chen, Y., Sarma, A., & McMahon, P. L. (2023). Linear-depth quantum circuits for loading fourier approximations of arbitrary functions. arXiv preprint arXiv:2302.03888.
  • Mozafari, F., Micheli, G. D., & Yang, Y. (2022). Efficient deterministic preparation of quantum states using decision diagrams. Physical Review A, 106(2). https://doi.org/10.1103/physreva.106.022617
  • Nakaji, K. (2020). Faster amplitude estimation. Quantum Information and Computation, 20(13&14), 1109–1123. https://doi.org/10.26421/qic20.13-14-2
  • Plekhanov, K., Rosenkranz, M., Fiorentini, M., & Lubasch, M. (2022). Variational quantum amplitude estimation. Quantum, 6, 670. https://doi.org/10.22331/q-2022-03-17-670
  • Plesch, M., & Brukner, ˇC. (2010). Quantum-state preparation with universal gate decompositions. https://doi.org/10. 1103/PhysRevA.83.032302
  • Pracht, R. (2023). The pricing of American options on the quantum computer. https://doi.org/10.2139/ssrn.4350641
  • Pracht, R. (2022). Quantum binomial tree, an effective method for probability distribution loading for derivative pric- ing.
  • Pracht, R., Ryterski, A., Plewa, J., & Stefaniak, M. (2022). Fx asian option pricing using quantum computers. https: //doi.org/10.2139/ssrn.4137397
  • Radha, S. K. (2021). Quantum option pricing using wick rotated imaginary time evolution. https://doi.org/10.48550/ ARXIV.2101.04280
  • Rall, P., & Fuller, B. (2022). Amplitude estimation from quantum signal processing. https://doi.org/10.48550/ARXIV.2207.08628
  • Ran, S.-J. (2020). Encoding of matrix product states into quantum circuits of one- and two-qubit gates. Physical Review A, 101, 032310.
  • Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial derivatives. Physical Review A, 98(2).
  • Rebentrost, P., Luongo, A., Bosch, S., & Lloyd, S. (2022). Quantum computational finance: Martingale asset pricing for incomplete markets. https://doi.org/10.48550/ARXIV.2209.08867
  • Rindell, T., Yenilen, B., Halonen, N., P¨onni, A., Tittonen, I., & Raasakka, M. (2022). Generating approximate state preparation circuits for nisq computers with a genetic algorithm. arXiv preprint arXiv:2210.06411.
  • Sanders, Y. R., Low, G. H., Scherer, A., & Berry, D. W. (2019). Black-box quantum state preparation without arith- metic. Phys. Rev. Lett., 122, 020502. https://doi.org/10.1103/PhysRevLett.122.020502
  • Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N., & Woerner, S. (2020). Option pricing using quantum computers. Quantum, 4, 291.
  • Sun, X., Tian, G., Yang, S., Yuan, P., & Zhang, S. (2023). Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. IEEE Transactions on Computer-Aided Design of Integrated Cir-cuits and Systems. https://doi.org/10.1109/TCAD.2023.3244885
  • Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2020). Amplitude estimation without phase estimation. Quantum Information Processing, 19(2). https://doi.org/10.1007/s11128-019-2565-2
  • Szasz, A., Younis, E., & de Jong, W. (2023). Numerical circuit synthesis and compilation for multi-state preparation. http://arxiv.org/abs/2305.01816
  • Tanaka, T., Suzuki, Y., Uno, S., Raymond, R., Onodera, T., & Yamamoto, N. (2021). Amplitude estimation via maxi- mum likelihood on noisy quantum computer. Quantum Information Processing, 20, 1–29.
  • Tanaka, T., Uno, S., Onodera, T., Yamamoto, N., & Suzuki, Y. (2022). Noisy quantum amplitude estimation without noise estimation. Phys. Rev. A, 105, 012411. https://doi.org/10.1103/PhysRevA.105.012411
  • Tang, H., Pal, A., Wang, T.-Y., Qiao, L.-F., Gao, J., & Jin, X.-M. (2021). Quantum computation for pricing the collat- eralized debt obligations. Quantum Engineering, 3(4), e84. https://doi.org/https://doi.org/10.1002/que2.84
  • Tang, H., Wu, W., & Jin, X.-M. (2022). Quantum computation for pricing caps using the libor market model.
  • Udvarnoki, Z., F´ath, G., & Fogarasi, N. (2023). Quantum advantage of monte carlo option pricing. Journal of Physics Communications, 7(5), 055001. https://doi.org/10.1088/2399-6528/acd2a4
  • Uno, S., Suzuki, Y., Hisanaga, K., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2021). Modified grover operator for quantum amplitude estimation. New Journal of Physics, 23(8), 083031. https://doi.org/10.1088/1367-2630/ac19da
  • Wang, G., Koh, D. E., Johnson, P. D., & Cao, Y. (2021). Minimizing estimation runtime on noisy quantum computers. PRX Quantum, 2, 010346. https://doi.org/10.1103/PRXQuantum.2.010346
  • Yu, K., Lim, H., Rao, P., & Jin, D. (2020). Comparison of amplitude estimation algorithms by implementation. https: //doi.org/10.48550/ARXIV.2005.05300
  • Zhang, X.-M., Li, T., & Yuan, X. (2022). Quantum state preparation with optimal circuit depth: Implementations and applications. Physical Review Letters, 129(23), 230504.
  • Zhao, Y., Wang, H., Xu, K., Wang, Y., Zhu, J., & Wang, F. (2022). Adaptive algorithm for quantum amplitude estimation. https://doi.org/10.48550/ARXIV.2206.08449