There is a newer version of the record available.

Published July 31, 2023 | Version v20230619
Dataset Open

Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Long-term data (2000-2022)

  • 1. OpenGeoHub

Description

This data is part of the Monthly aggregated Water Vapor MODIS MCD19A2 (1 km) dataset. Check the related identifiers section on the Zenodo side panel to access other parts of the dataset.

General Description

The monthly aggregated water vapor dataset is derived from MCD19A2 v061. The Water Vapor data measures the column above ground retrieved from MODIS near-IR bands at 0.94μm. The dataset time spans from 2000 to 2022 and provides data that covers the entire globe. The dataset can be used in many applications like water cycle modeling, vegetation mapping, and soil mapping. This dataset includes:

  • Monthly time-series:
    Derived from MCD19A2 v061, this data provides a monthly aggregated mean and standard deviation of daily water vapor time-series data from 2000 to 2022. Only positive non-cloudy pixels were considered valid observations to derive the mean and the standard deviation. The remaining no-data values were filled using the TMWM algorithm. This dataset also includes smoothed mean and standard deviation values using the Whittaker method. The quality assessment layers and the number of valid observations for each month can provide an indication of the reliability of the monthly mean and standard deviation values.
  • Yearly time-series:
    Derived from monthly time-series, this data provides a yearly time-series aggregated statistics of the monthly time-series data.
  • Long-term data (2000-2022):
    Derived from monthly time-series, this data provides long-term aggregated statistics for the whole series of monthly observations.

Data Details

  • Time period: 2000–2022
  • Type of data: Water vapor column above the ground (0.001cm)
  • How the data was collected or derived: Derived from MCD19A2 v061 using Google Earth Engine. Cloudy pixels were removed and only positive values of water vapor were considered to compute the statistics. The time-series gap-filling and time-series smoothing were computed using the Scikit-map Python package.
  • Statistical methods used: Four statistics were derived: standard deviation, percentiles 25, 50, and 75.
  • Limitations or exclusions in the data: The dataset does not include data for Antarctica.
  • Coordinate reference system: EPSG:4326
  • Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.00081, 179.99994, 87.37000)
  • Spatial resolution: 1/120 d.d. = 0.008333333 (1km)
  • Image size: 43,200 x 17,924
  • File format: Cloud Optimized Geotiff (COG) format.

Support

If you discover a bug, artifact, or inconsistency, or if you have a question please use some of the following channels:

Name convention

To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are:

  1. generic variable name: wv = Water vapor
  2. variable procedure combination: mcd19a2v061.seasconv = MCD19A2 v061 with gap-filling algorithm
  3. Position in the probability distribution / variable type: m = mean | sd = standard deviation | n = number of observations | qa = quality assessment
  4. Spatial support: 1km
  5. Depth reference: s = surface
  6. Time reference begin time: 20000101 = 2000-01-01
  7. Time reference end time: 20221231 = 2022-12-31
  8. Bounding box: go = global (without Antarctica)
  9. EPSG code: epsg.4326 = EPSG:4326
  10. Version code: v20230619 = 2023-06-19 (creation date)

Files

00_preview.png

Files (25.8 GB)

Name Size Download all
md5:03a567b8c41a175b9f8e89fd0fe52ffd
121.3 kB Preview Download
md5:d5f5811f5917ff72279c20869f377764
282.3 MB Preview Download
md5:8a0ae51f88447e446d583b53da89b33a
286.6 MB Preview Download
md5:ce77803c386db6c547c555d90f5dab05
291.5 MB Preview Download
md5:5568b8fef50adbda7fe56d49edec9a4f
217.0 MB Preview Download
md5:12f159a172d2ca62974e9c81dab8c71a
281.7 MB Preview Download
md5:9b50e5cd723aca10d633e2a334af0f58
287.4 MB Preview Download
md5:399afa30f35c7d272d0b4d91f33315d4
291.2 MB Preview Download
md5:24955f1350a5063ddbe3c9137de28cd9
221.6 MB Preview Download
md5:cadca857b7e760fa1d8f26057bd245d5
284.7 MB Preview Download
md5:bab700df0a0facbd242ed7851da6c75b
291.1 MB Preview Download
md5:5d4472deb5a06f8bc5cbc31d8f1cdf50
293.0 MB Preview Download
md5:6fc3230e506e9f4d0a9386412c96a904
219.5 MB Preview Download
md5:628892b89deaf9ac9476614ff0b20451
295.5 MB Preview Download
md5:f58211aa265c6a12e3dbad8cfff24f00
301.2 MB Preview Download
md5:c3b5ee87f50987b1c437b2f2909c4ed9
303.7 MB Preview Download
md5:62484ffef5bdfdcad53d0d123e6d6dd8
230.8 MB Preview Download
md5:51cf0a29b846d131708ca77e53eb8e4d
308.8 MB Preview Download
md5:e67c670725613daf14574ac5b4637512
314.5 MB Preview Download
md5:cfff216b72587c5c9b4dce6897444589
316.4 MB Preview Download
md5:2ae78c8503aca714d19059e78adb526e
243.2 MB Preview Download
md5:72a79eb3ce81b7e3b9eeb8055ea8cf47
320.5 MB Preview Download
md5:0173ccb1138b8a5e1653a1be90017499
324.3 MB Preview Download
md5:00420f323115ae82fb30ade2a09f251e
326.7 MB Preview Download
md5:74efdddcfff130b3a690bf7275f4d35c
255.2 MB Preview Download
md5:5197ce8b67e81183f981c245e8819657
325.6 MB Preview Download
md5:e50995a588c98d3ee324b464ccf9a858
328.5 MB Preview Download
md5:cc8cb1bda6c3d7f63807004b4452c5e6
331.3 MB Preview Download
md5:034653ea7a17cc10c39abb6abcd5c4c3
257.1 MB Preview Download
md5:9ba4f2bf415955d9304fc52ab7f2b3de
324.8 MB Preview Download
md5:bee7111b98807549401c78c45185afb7
328.2 MB Preview Download
md5:548718b3162b69596baabc55090fd7ac
331.0 MB Preview Download
md5:fbe3f22b43345b0a28ca81210a9d9f08
258.2 MB Preview Download
md5:38d52c65a8fbdf27b9d1b8548d88ffb8
316.5 MB Preview Download
md5:7bc635375b685eaabbd5031856c8bbad
321.0 MB Preview Download
md5:cd2b4f6dc5104b61994d6342fc0fe78c
323.2 MB Preview Download
md5:4555deb630be654c0f4aed6f5b0b6345
249.9 MB Preview Download
md5:5390487c167aa63d1b8b87127d67de2b
304.9 MB Preview Download
md5:83ef463e0cd933de3093e0a21301569e
310.4 MB Preview Download
md5:4aa25d5433bb00dc9fc29128f9f08158
313.4 MB Preview Download
md5:1f1de9129c40e63c7a8c8a75e0b40a8e
240.8 MB Preview Download
md5:97834b818fc8655eeffe016f03454bf0
296.6 MB Preview Download
md5:5ef026f09ce6077b421a5b1e55112e91
302.3 MB Preview Download
md5:3bb12bf8afae2bf6afa13d93fb756085
306.5 MB Preview Download
md5:697c84069335f583b020beff280a15c2
235.3 MB Preview Download
md5:15fd0513a54e4abcf13da040213c9c7b
288.0 MB Preview Download
md5:754bfc7c577ce7a48c5b7baad2e39e61
293.4 MB Preview Download
md5:99acd88d92a5a66528db976f4dfa2227
297.0 MB Preview Download
md5:4644410bee740056d3546b3570b10e7d
219.1 MB Preview Download
md5:9c61422fbf11db62ad4e09680a165f5c
230.5 MB Preview Download
md5:21599293b098f801666a9811855c027d
237.6 MB Preview Download
md5:e161dd425937b82143deed5c7b95577d
245.7 MB Preview Download
md5:fd7b8262e48525e1f79018503423b473
194.2 MB Preview Download
md5:1e9b06887d01d52448b75ab0ccddd398
227.0 MB Preview Download
md5:e211f38bcb4d8ff197f79c29095bdcf9
238.2 MB Preview Download
md5:1027fd258a77e7930f96bf86a1e31e60
245.1 MB Preview Download
md5:1240dde15354e6fbff05603d4bfb0841
200.2 MB Preview Download
md5:d89008c613054369fedf7bff28cb4db4
232.3 MB Preview Download
md5:d61da4e60b07abaef375ccafad9a6b14
243.9 MB Preview Download
md5:29f0552b7e9641719079b0e0cfc6169d
249.8 MB Preview Download
md5:9fafee21d3a7bcc904b74bb028564c45
199.2 MB Preview Download
md5:b422bbec4f579d79314edfdf94927d8f
247.5 MB Preview Download
md5:36ddc13852da9eb850879773a39cd4e7
257.0 MB Preview Download
md5:713442af4c5df9f9c9189036a904dbeb
262.6 MB Preview Download
md5:e94fa23d629457a3dbafcecdd3b8aefe
208.9 MB Preview Download
md5:2b78666fa4aab711002f9a13b99c9c8f
259.6 MB Preview Download
md5:42853152fa188f13ac4354906039a5a6
268.0 MB Preview Download
md5:6c9f94f6192a2aaa4dd124427577e805
273.7 MB Preview Download
md5:57128fa8c4da1d88f0a853202aea9995
218.1 MB Preview Download
md5:f37bd744fec58d6065c6f412bc7541bb
267.9 MB Preview Download
md5:d2a4a9d6c7e567766cf7ea08e7e0b373
276.4 MB Preview Download
md5:493516740cc7f4ccd26dfda83c5975d3
281.1 MB Preview Download
md5:88ed6d3c0d95e1fb6585dda54e9f2228
228.4 MB Preview Download
md5:d9e6cb8342d15eba463e0b7796661cda
269.3 MB Preview Download
md5:02672df3f2126272af07cff615bea6ab
277.8 MB Preview Download
md5:fcd945ae2e357fe4f53eda6e6a9473b4
282.3 MB Preview Download
md5:181aba4c2a3ab5799de395b846dfb32b
228.9 MB Preview Download
md5:f7f162a6a77138aa3e4d1b387d4db8fa
269.0 MB Preview Download
md5:fb579943d63a6b5708b4cd8e00650886
278.6 MB Preview Download
md5:16c4b62f432f18622ec7c8508080b1ef
283.7 MB Preview Download
md5:71a137ac158d8ea431982de7eba46b85
231.0 MB Preview Download
md5:419afd52b71698ab366528fd80a2e713
263.5 MB Preview Download
md5:7944750f8cad926e11abae85ce8b9dc8
272.6 MB Preview Download
md5:fd8251a9cc3efd2f6d34805cab583d22
277.9 MB Preview Download
md5:4fa33b2b080d63bedecc39309c930b3d
222.6 MB Preview Download
md5:33d9261b00d520a80568564a555675fb
254.9 MB Preview Download
md5:019d7bef29a31059b793c583f792f554
264.2 MB Preview Download
md5:5113fbb6224e79b7286faa4e4fd62347
270.4 MB Preview Download
md5:d43e31fdf48011e3a7372b20a1d4a0f9
216.8 MB Preview Download
md5:24b118007f9a50b578416d2f28cb563f
247.1 MB Preview Download
md5:fcedcc2051448241d93871dfa20bbb0a
257.1 MB Preview Download
md5:98c82d433ca6e6533ac6db75c0a53e62
264.0 MB Preview Download
md5:72ff35faa0295bdae19d61a11fdfc8eb
210.4 MB Preview Download
md5:c28e1f76e13bdfb03f9462cf3ba2a6d1
236.3 MB Preview Download
md5:146ec5abd9dc90ff65277484e13fc872
245.3 MB Preview Download
md5:7ae3cc6436b6b644dbc1863b301697a7
251.4 MB Preview Download
md5:9371da175168d3a9bddffca557db7b8d
195.5 MB Preview Download

Additional details

Related works

Is continued by
Dataset: 10.5281/zenodo.8193024 (DOI)

Funding

European Commission
OEMC - Open-Earth-Monitor Cyberinfrastructure 101059548

Dates

Collected
2000-01-01/2022-12-31
Processed period.