Volumetric segmentation of biological cells and subcellular structures for optical diffraction tomography images - dataset
Creators
Description
This dataset includes 4 files with segmentation results for 4 different ODT reconstructions of SH-SY5Y neuroblastoma cell. The segmentation results contain:
- 3D binary masks of biological cells obtained through Cellpose [1] and ODT-SAS;
- 3D binary masks of organelles: nucleoli and lipid structures (LS) obtained through slice-by-slice manual segmentation and ODT-SAS.
All files are .*mat files.
The files REC_SH-SY5Y_1.mat, REC_SH-SY5Y_2.mat and REC_SH-SY5Y_3.mat consist of 7 variables:
RECON – tomographic reconstruction of SH-SY5Y neuroblastoma cell;
n_imm – refractive index of object immersion medium;
dx – object space sample size in XY [\(\mu m\)];
rayXY – xy-coordinates of illumination vectors;
maskManual – table with manually determined 3D binary masks of organelles;
maskCellpose – 3D binary mask of biological cell obtained through Cellpose;
maskODTSAS – table with 3D binary masks of biological cell and their organelles obtained through ODT-SAS.
File REC_SH-SY5Y_4.mat includes masks for the ODT-SAS and Cellpose segmentation of three closely packed cells and consists of 5 variables: RECON, n_imm, dx, maskCellpose and maskODTSAS.
Access a particular 3D binary mask from 'maskManual' and 'maskODTSAS' tables, using the following names: 'Cell', 'Nucleoli', 'LS'.
For example:
cellMask = maskODTSAS.Cell{1};
[1] Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist algorithm for cellular segmentation. Nature methods, 18(1), 100-106.
Files
Files
(3.3 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:bf2ed6ccfd576a679ffe6664a095b486
|
1.2 GB | Download |
|
md5:724e11d8fa4932b78018a629cdf1fbcb
|
826.4 MB | Download |
|
md5:9edf2e5bc549b0b0827440e66c59729f
|
609.0 MB | Download |
|
md5:b31f998103d494684da4214eac50540b
|
654.5 MB | Download |