Published February 29, 2020 | Version v1
Journal article Restricted

Hyperelodiones A-C, monoterpenoid polyprenylated acylphoroglucinols from Hypericum elodeoides, induce cancer cells apoptosis by targeting RXRα

  • 1. , Mi Zhou & , Junjie Chen, Guanghui Wang, Ting Lin, Yujie Huang, Furong Yu,

Description

Qiu, Daren, Zhou, Mi, Chen, Junjie, Wang, Guanghui, Lin, Ting, Huang, Yujie, Yu, Furong, Ding, Rong, Sun, Cuiling, Tian, Wenjing, Chen, Haifeng (2020): Hyperelodiones A-C, monoterpenoid polyprenylated acylphoroglucinols from Hypericum elodeoides, induce cancer cells apoptosis by targeting RXRα. Phytochemistry (112216) 170: 112216, DOI: 10.1016/j.phytochem.2019.112216, URL: http://dx.doi.org/10.1016/j.phytochem.2019.112216

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:0422FFE9E02C496CFFB2FFC6855D8D0E

References

  • Abe, I., Watanabe, T., Noguchi, H., 2004. Enzymatic formation of long-chain polyketid pyrones by plant type III polyketide synthases. Phytochemistry 65, 2447-2453. https://doi.org/10.1016/j.phytochem.2004.08.005.
  • Altucci, L., Leibowitz, M.D., Ogilvie, K.M., Lera, A.R., Gronemeyer, H., 2007. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6, 793-810. https://doi.org/10.1038/nrd2397.
  • Ciochina, R., Grossman, R.B., 2006. Polycyclic polyprenylated acylphloroglucinols. Chem. Rev. 106, 3963-3986. https://doi.org/10.1021/cr0500582.
  • Decosterd, L.A., Stoeckli-Evans, H., Chapuis, J.C., Sordat, B., 1989. Hostettmann, K. New cell growth-inhibitory cyclohexadienone derivatives from Hypericurn calycinurn L. Helv. Chim. Acta 72, 1833-1845. https://doi.org/10.1002/hlca.19890720820.
  • Fobofou, S.A.T., Franke, K., Sanna, G., Prorzel, A., Bullita, E., Colla, P.L., Wessjohann, L.A., 2015. Isolation and anticancer, anthelminthic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum. Bioorg. Med. Chem. Lett 23, 6327-6334. https://doi.org/10. 1016/j.bmc.2015.08.028.
  • Hu, L.H., Sim, K.Y., Sampsoniones, A.-M., 2000. A unique family of caged polyprenylated benzoylphloroglucinol derivatives, from Hypericum sampsonii. Tetrahedron 56, 1379-1386. https://doi.org/10.1002/chin.200024231.
  • Lenhard, J.M., Lancaster, M.E., Paulik, M.A., Weiel, J.E., Binz, J.G., Sundseth, S.S., Gaskill, B.A., Lightfoot, R.M., Brown, H.R., 1999. The RXR agonist LG100268 causes hepatomegaly, improves glycaemic control and decreases cardiovascular risk and cachexia in diabetic mice suffering from pancreatic beta-cell dysfunction. Diabetologia 42, 545-554. https://doi.org/10.1007/s001250051193.
  • Li, Y.R., Xu, W.J., Wei, S.S., Lu, W.J., Lu, J., Kong, L.Y., 2019. Hyperbeanols F-Q, Diverse monoterpenoid polyprenylated acylphloroglucinols from the flowers of Hypericum beanie. Phytochemistry 159, 56-64. https://doi.org/10.1016/j.phytochem.2018.12. 005.
  • Pei, Y.H., Li, X., Zu, T.R., 1989. An empirical correlations between optical rotation and absolute configuration of optical active α- methylbutyrylphloroglucinols and its synthesis. Acta Pharm. Sin. 24, 413-421.
  • Robinsonrechavi, M., Garcia, H.E., Laudet, V., 2003. The nuclear receptor superfamily. J. Cell Sci. 116, 585-586. https://doi.org/10.1242/jcs.00247.
  • Tian, W.J., Qiu, Y.Q., Chen, H.F., Jin, X.J., Yao, X.J., Dai, Y., Yao, X.S., 2017a. Chiral separation and absolute configurations of two pairs of racemic polyprenylated benzophenones from Hypericum sampsonii. Fitoterapia 116, 39-44. https://doi.org/10. 1016/j.fitote.2016.10.014.
  • Tian, W.J., Qiu, Y.Q., Chen, J.J., Yao, X.J., Wang, G.H., Dai, Y., Chen, H.F., Yao, X.S., 2017b. Norsampsone E, an unprecedented decarbonyl polycyclic polyprenylated acylphloroglucinol with a homoadamantyl core from Hypericum sampsonii. RSC Adv. 53, 33113-33119. https://doi.org/10.1039/c7ra05947g.
  • Tian, W.J., Qiu, Y.Q., Jin, X.J., Chen, H.F., Yao, X.J., Dai, Y., Yao, X.S., 2016. Hypersampsones S-W, new polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii. RSC Adv. 6, 50887-50894. https://doi.org/10.1039/ c5ra26332h.
  • Tian, W.J., Qiu, Y.Q., Jin, X.J., Chen, H.F., Yao, X.J., Dai, Y., Yao, X.S., 2014a. Novel polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii. Tetrahedron 70, 7912-7916. https://doi.org/10.1055/s-0034-1382626.
  • Tian, W.J., Qiu, Y.Q., Yao, X.J., Chen, H.F., Dai, Y., Zhang, X.K., Yao, X.S., 2014b. Dioxasampsones A and B, two polycyclic polyprenylated acylphloroglucinols with unusual epoxy-ring-fused skeleton from Hypericum sampsonii. Org. Lett. 16, 6346-6349. https://doi.org/10.1021/ol503122m.
  • Tian, W.J., Yu, Y., Yao, X.J., Chen, H.F., Dai, Y., Zhang, X.K., Yao, X.S., 2014c. Norsampsones A-D, four new decarbonyl polycylic polyprenylated acylphloroglucinols from Hypericum sampsonii. Org. Lett. 16, 3448-3451. https://doi.org/10. 1039/c7ra05947g.
  • Yang, X.W., Grossman, R.B., Xu, G., 2018. Research progress of polycyclic polyprenylated acylphloroglucinols. Chem. Rev. 118, 3508-3558. https://doi.org/10.1021/acs. chemrev.7b00551.
  • Yang, X.W., Li, M.M., Liu, X., Ferreira, D., Ding, Y., Zhang, J.J., Liao, Y., Qin, H.B., Xu, G., 2015. Polycyclic polyprenylated acylphloroglucinol congeners possessing diverse structures from Hypericum henryi. J. Nat. Prod. 78, 885-895. https://doi.org/10. 1021/acs.jnatprod.5b00057.
  • Yang, X.W., Li, Y.P., Su, J., Ma, W.G., Xu, G., 2016. Hyperjapones A- E, terpenoid polymethylated acylphloroglucinols from Hypericum japonicum. Org. Lett. 18, 1876-1879. https://doi.org/10.1021/acs.orglett.6b00650.
  • Zhang, J.J., Yang, X.W., Ma, J.Z., Ye, Y., Shen, X.L., Xu, G., 2015. Cytotoxic polyprenylated acylphloroglucinol derivatives from Hypericum henryi. Tetrahedron 71, 8315-8319. https://doi.org/10.1016/j.tet.2015.08.059.
  • Zhu, H., Chen, C., Liu, J., Sun, B., Wei, G.Z., Li, Y., Zhang, J., Yao, G., Luo, Z.W., Xue, Y.B., Zhang, Y.H., 2015. Hyperascyrones A-H, polyprenylated spirocyclic acylphloroglucinol derivatives from Hypericum ascyron Linn. Phytochemistry 115, 222-230. https://doi.org/10.1016/j.phytochem.2015.02.009.