Published July 12, 2023
| Version 1
Dataset
Open
Dataset of sound field simulations above finite absorbers
Creators
- 1. KTH Royal Institute of Technology
- 2. Federal University of Santa Maria
- 3. Rensselaer Polytechnic Institute
- 4. Siemens Industry Software
- 5. NTNU Norwegian University of Science and Technology
Description
The authors' documentation on the training, validation, and testing datasets in their paper "Sound absorption estimation of finite porous samples with deep residual learning."
The sound fields are generated with a simplified boundary element method (BEM) of a baffled porous layer on a rigid backing using the Delany–Bazley–Miki model. Further information on the contents of this database can be found in documentation.pdf.
More details on the models and reproduction of results of the paper using this database can be found in the GitHub repo: https://github.com/eliaszea/finite-absorber-ML.
Files
documentation.pdf
Files
(8.8 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:fd0e558d122d82996ed5d8cacb666a6d
|
329.0 kB | Preview Download |
|
md5:2a3141ce34bc1407a81b2d0357dc4c01
|
243.6 MB | Download |
|
md5:1aa8535ffdecf35f462589e847919e8c
|
243.6 MB | Download |
|
md5:afef375492e61d338180397927662b1b
|
243.6 MB | Download |
|
md5:90fa67b21a52803267e4f8bbb01d4872
|
243.6 MB | Download |
|
md5:fb733f54cd64ccadcd657af4ba204085
|
243.6 MB | Download |
|
md5:d8922b2a66cd043da9501070a593787d
|
243.6 MB | Download |
|
md5:e80136e30aa7c09fbb12b1fb44d55834
|
243.6 MB | Download |
|
md5:f7e9678640dc61a4e223e5a8495f58e8
|
243.6 MB | Download |
|
md5:d0935b0ab61bab6cdc6f8a4fbaa5160d
|
243.6 MB | Download |
|
md5:295f3ce250e3a0123819451a70678b5f
|
243.6 MB | Download |
|
md5:7a3e04159bd924284a97933a1f26ec4e
|
243.6 MB | Download |
|
md5:5e2c9e4c5bfaf66b3c59b531976773d9
|
243.6 MB | Download |
|
md5:87d0f4fcab7b383851440c064bf0ad1a
|
243.6 MB | Download |
|
md5:db6ac05720ca381f207e32a1e9f048c1
|
243.6 MB | Download |
|
md5:4308ab124c1980509a29bdfc22e3cabd
|
243.6 MB | Download |
|
md5:3aa7de595696999237fd813995948513
|
243.6 MB | Download |
|
md5:66947852e51d92cb46f3e412b2678651
|
3.9 GB | Download |
|
md5:4ec486f98eae2d7791b0625870e55943
|
1.7 MB | Download |
|
md5:10070615313b23ec83cd4a2bd451d29b
|
974.4 MB | Download |