Published July 12, 2023 | Version 1
Dataset Open

Dataset of sound field simulations above finite absorbers

  • 1. KTH Royal Institute of Technology
  • 2. Federal University of Santa Maria
  • 3. Rensselaer Polytechnic Institute
  • 4. Siemens Industry Software
  • 5. NTNU Norwegian University of Science and Technology

Description

The authors' documentation on the training, validation, and testing datasets in their paper "Sound absorption estimation of finite porous samples with deep residual learning."

The sound fields are generated with a simplified boundary element method (BEM) of a baffled porous layer on a rigid backing using the Delany–Bazley–Miki model. Further information on the contents of this database can be found in documentation.pdf.

More details on the models and reproduction of results of the paper using this database can be found in the GitHub repo: https://github.com/eliaszea/finite-absorber-ML

Files

documentation.pdf

Files (8.8 GB)

Name Size Download all
md5:fd0e558d122d82996ed5d8cacb666a6d
329.0 kB Preview Download
md5:2a3141ce34bc1407a81b2d0357dc4c01
243.6 MB Download
md5:1aa8535ffdecf35f462589e847919e8c
243.6 MB Download
md5:afef375492e61d338180397927662b1b
243.6 MB Download
md5:90fa67b21a52803267e4f8bbb01d4872
243.6 MB Download
md5:fb733f54cd64ccadcd657af4ba204085
243.6 MB Download
md5:d8922b2a66cd043da9501070a593787d
243.6 MB Download
md5:e80136e30aa7c09fbb12b1fb44d55834
243.6 MB Download
md5:f7e9678640dc61a4e223e5a8495f58e8
243.6 MB Download
md5:d0935b0ab61bab6cdc6f8a4fbaa5160d
243.6 MB Download
md5:295f3ce250e3a0123819451a70678b5f
243.6 MB Download
md5:7a3e04159bd924284a97933a1f26ec4e
243.6 MB Download
md5:5e2c9e4c5bfaf66b3c59b531976773d9
243.6 MB Download
md5:87d0f4fcab7b383851440c064bf0ad1a
243.6 MB Download
md5:db6ac05720ca381f207e32a1e9f048c1
243.6 MB Download
md5:4308ab124c1980509a29bdfc22e3cabd
243.6 MB Download
md5:3aa7de595696999237fd813995948513
243.6 MB Download
md5:66947852e51d92cb46f3e412b2678651
3.9 GB Download
md5:4ec486f98eae2d7791b0625870e55943
1.7 MB Download
md5:10070615313b23ec83cd4a2bd451d29b
974.4 MB Download