Published June 26, 2023 | Version 1.0.0
Software Open

Space-time inconsistencies in the dynamics of water coverage: tracking walking floods

  • 1. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
  • 2. Grupo de Estudios Ambientales – IMASL, Universidad Nacional de San Luis & CONICET, San Luis, Argentina

Description

This folder contains the R scripts and associated datasets to replicate the work developed in the article "Space-time inconsistencies in the dynamics of water coverage: tracking walking floods" under review at Geophysical Research Letters.

Global flooded extent was derived from JRC's Global Surface Water dataset v1.4 (Pekel et al., 2016) available in the Google Earth Engine Data Catalog (https://developers.google.com/earth-engine/datasets). A version of the Google Earth Engine code for quantifying flooding displacement in one landscape (i.e., cell) is found at: https://code.earthengine.google.com/67137f175ff3ef0c73ccd6d07338eaac?noload=true

Anthromes were downloaded from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G0QDNQ (Ellis et al., 2019). River segment characterization was extracted from https://zenodo.org/record/2582500 based on Global River Width from Landsat (Frasson et al., 2019; Allen & Pavelsky, 2018). Global Lakes and Wetlands Database Level 3 (GLWD-3; Lehner & Döll, 2004) was downloaded from https://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-lakes-and-wetlands-grid-level-3. The aridity index was calculated based on TerraClimate long-term averages of annual precipitation-to-potential evapotranspiration ratios (Abatzoglou et al., 2018), while terrain attributes were calculated based on Global Multi-resolution Terrain Dataset (USGS), both available in the Google Earth Engine Data Catalog.

Files

anthromes_aggregated.csv

Files (5.7 MB)

Name Size Download all
md5:22233cc94b8efe735f1257969d365c31
541.8 kB Preview Download
md5:060282c7c84876846b7a25e978b91cad
472.7 kB Preview Download
md5:f239b5380b8a2b0f1ba957567eb3a8e9
1.3 MB Preview Download
md5:7536394d476720ef958cab80c072b7f7
5.3 kB Download
md5:fdbf3f739eb9ed2f7037cd30cd00daac
396.9 kB Preview Download
md5:0495744907a1317af1a4c18248e83e4b
1.0 MB Download
md5:c742bee3d4edfc2948a2ad08de1790a5
145 Bytes Download
md5:7ec406b83cad25a7cf0e1629ed92a85b
1.7 MB Download
md5:cda66cbc3c0f5f9d85b47c1bd6e6dd6b
100.2 kB Download
md5:ca40777c9cf024bd86a378822d40af07
181.8 kB Preview Download

Additional details

References

  • Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
  • Ellis, Erle; Klein Goldewijk, Kees, 2019, "Anthromes 12K Full Dataset", https://doi.org/10.7910/DVN/G0QDNQ, Harvard Dataverse, V3 [Dataset].
  • Frasson, Renato Prata de Moraes, Pavelsky, Tamlin M., Fonstad, Mark A., Durand, Michael T., Allen, George H., Schumann, Guy, Lion, Christine, Beighley, R. Edward, & Yang, Xiao. (2019). Global database of river width, slope, catchment area, meander wavelength, sinuosity, and discharge [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.2582500
  • Lehner, B., & Döll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of hydrology, 296(1-4), 1-22.
  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191