There is a newer version of the record available.

Published May 25, 2023 | Version v3
Dataset Open

Rib CT fracture

  • 1. Radboud University Medical Center

Description

This data set is part of the public development data for the 2023 Automated Universal Classification Challenge (AUC23). The data set concerns the detection and classification of rib fractures on computed tomography (CT) scans and was previously introduced and described by Jin, L. et al (2020). The original dataset was modified to classify center-cropped rib fractures and no images or patient information were added. Data was restructured in compliance with the AUC23 challenge format.

Images are 3D tensors:

  • 0: 3D center-cropped CT scan

Fracture classification labels:

  • 0: Displaced
  • 1: Non-displaced
  • 2: Buckle
  • 3: Segmental

Folder structure:

imagesTr (root folder with all patients and studies)
    ├── ribfrac_0001001_0000.mha  (3D CT for fracture 0001001)
    ├── ribfrac_0001002_0000.mha  (3D CT for fracture 0001002)
    ├── ...

Please cite the following article if you are using the Rib Fracture Detection and Classification dataset:

Liang Jin, Jiancheng Yang, Kaiming Kuang, Bingbing Ni, Yiyi Gao, Yingli Sun, Pan Gao, Weiling Ma, Mingyu Tan, Hui Kang, Jiajun Chen, Ming Li. Deep-Learning-Assisted Detection and Segmentation of Rib Fractures from CT Scans: Development and Validation of FracNet. EBioMedicine (2020).DOI: https://doi.org/10.1016/j.ebiom.2020.103106

 

Files

dataset.json

Files (9.5 GB)

Name Size Download all
md5:324f142ddeb8a4037d13656141e6edb8
178.1 kB Preview Download
md5:fff4b145b044f5755732fda1d3aeda8c
19.3 kB Preview Download
md5:e7e93baa7b1f3e78f2ee8949d56742e7
9.5 GB Preview Download

Additional details

Related works

Is derived from
10.1016/j.ebiom.2020.103106 (DOI)

References

  • Liang Jin, Jiancheng Yang, Kaiming Kuang, Bingbing Ni, Yiyi Gao, Yingli Sun, Pan Gao, Weiling Ma, Mingyu Tan, Hui Kang, Jiajun Chen, Ming Li. Deep-Learning-Assisted Detection and Segmentation of Rib Fractures from CT Scans: Development and Validation of FracNet. EBioMedicine (2020).DOI: https://doi.org/10.1016/j.ebiom.2020.103106