QLKNN11D training set
Contributors
Project members:
Supervisors:
- 1. Aix-Marseille University (CNRS)
- 2. Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache
- 3. DIFFER
- 4. Eindhoven University of Technology
Description
QLKNN11D training set
This dataset contains a large-scale run of ~1 billion flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. QuaLiKiz is applied in numerous tokamak integrated modelling suites, and is openly available at https://gitlab.com/qualikiz-group/QuaLiKiz/. This dataset was generated with the 'QLKNN11D-hyper' tag of QuaLiKiz, equivalent to 2.8.1 apart from the negative magnetic shear filter being disabled. See https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags/QLKNN11D-hyper for the in-repository tag.
The dataset is appropriate for the training of learned surrogates of QuaLiKiz, e.g. with neural networks. See https://doi.org/10.1063/1.5134126 for a Physics of Plasmas publication illustrating the development of a learned surrogate (QLKNN10D-hyper) of an older version of QuaLiKiz (2.4.0) with a 300 million point 10D dataset. The paper is also available on arXiv https://arxiv.org/abs/1911.05617 and the older dataset on Zenodo https://doi.org/10.5281/zenodo.3497066. For an application example, see Van Mulders et al 2021 https://doi.org/10.1088/1741-4326/ac0d12, where QLKNN10D-hyper was applied for ITER hybrid scenario optimization. For any learned surrogates developed for QLKNN11D, the effective addition of the alphaMHD input dimension through rescaling the input magnetic shear (s) by s = s - alpha_MHD/2, as carried out in Van Mulders et al., is recommended.
Related repositories:
- General QuaLiKiz documentation https://qualikiz.com
- QuaLiKiz/QLKNN input/output variables naming scheme https://qualikiz.com/QuaLiKiz/Input-and-output-variables
- Training, plotting, filtering, and auxiliary tools https://gitlab.com/Karel-van-de-Plassche/QLKNN-develop
- QuaLiKiz related tools https://gitlab.com/qualikiz-group/QuaLiKiz-pythontools
- FORTRAN QLKNN implementation with wrapper for Python and MATLAB https://gitlab.com/qualikiz-group/QLKNN-fortran
- Weights and biases of 'hyperrectangle style' QLKNN https://gitlab.com/qualikiz-group/qlknn-hype
Data exploration
The data is provided in 43 netCDF files. We advise opening single datasets using xarray or multiple datasets out-of-core using dask. For reference, we give the load times and sizes of a single variable that just depends on the scan size `dimx` below. This was tested single-core on a Intel Xeon 8160 CPU at 2.1 GHz and 192 GB of DDR4 RAM. Note that during loading, more memory is needed than the final number.
Amount of datasets | Final in-RAM memory (GiB) |
Loading time single var (M:SS) |
---|---|---|
1 | 10.3 | 0:09 |
5 | 43.9 | 1:00 |
10 | 63.2 | 2:01 |
16 | 98.0 | 3:25 |
17 | Out Of Memory | x:xx |
Full dataset
The full dataset of QuaLiKiz in-and-output data is available on request. Note that this is 2.2 TiB of netCDF files!
Notes
Files
README.md
Files
(248.0 GB)
Name | Size | Download all |
---|---|---|
md5:9aaa2eb98b51ac9daae5960e56f3ce0e
|
1.5 kB | Download |
md5:23bc938f6deacdecd4ed4c4c030014cb
|
6.4 GB | Download |
md5:b4debcc81e7378d55402d9a2a768413f
|
8.6 GB | Download |
md5:b1d3abb12ffd603ba8624134ac3afc97
|
6.4 GB | Download |
md5:263d47da4e03531ebc6f50a0fbca6554
|
4.0 GB | Download |
md5:b959abfd2e2767b63de98edc65c68acc
|
7.1 GB | Download |
md5:1b1ceb5e49444021e9c0386bf49e73a8
|
8.2 GB | Download |
md5:04f3dbcd1d2dde7a1d29469c8926e76d
|
5.9 GB | Download |
md5:49bec20eedbcc9a2f91552068395906c
|
4.6 GB | Download |
md5:d798902186617be25b1fbadfa521e08a
|
7.2 GB | Download |
md5:3ce0ee2af98a29e2853499d463130dff
|
7.8 GB | Download |
md5:d362351148246191d1898d743a0baee3
|
5.2 GB | Download |
md5:4e526923227086b8efad159e0c7b2618
|
4.8 GB | Download |
md5:1c23d0d927fd4dd0b62a81b6db6d79c3
|
7.9 GB | Download |
md5:330f47c71c2145079051922c9281cc3f
|
6.8 GB | Download |
md5:668c3aa7023a7473dd4e29137fcb0519
|
4.7 GB | Download |
md5:490f879ebd38f2689594d3b89b827c7f
|
4.9 GB | Download |
md5:a47dac3eacd150839c4b5513971bc196
|
8.1 GB | Download |
md5:5c39600eb0596f822681162fcccf6b5f
|
6.6 GB | Download |
md5:ecbcf1f3e589db4a9c463eb0214614d4
|
3.7 GB | Download |
md5:e0574790a13ed7f41eda6db46e937131
|
5.6 GB | Download |
md5:9970289792a52e1031754ab25dfcd297
|
8.2 GB | Download |
md5:ae1117303290d09b06c50118e4e98e1f
|
5.8 GB | Download |
md5:7b9d8c34e34b9c2332ca626407f4b6df
|
3.6 GB | Download |
md5:e16815de8a91190ef89629729258a4bd
|
6.4 GB | Download |
md5:09d28e38fbe8bc216e0830d465e168ef
|
7.4 GB | Download |
md5:c94503f78eb91251d9935fec0406d76d
|
5.4 GB | Download |
md5:1459ca9f36c1a329ff502e771ee34ba8
|
3.7 GB | Download |
md5:f336aa7913da9bcfa887765bc5cc5290
|
6.5 GB | Download |
md5:49a846a30fea675582db2907542a8142
|
6.8 GB | Download |
md5:fcb1dbea187ba01e7d0bde63d243aa0e
|
4.7 GB | Download |
md5:49005c7ce5987195c3bb2e93d40bf654
|
4.3 GB | Download |
md5:00383f3aec96b30a78147aac7b56504f
|
6.3 GB | Download |
md5:5ce7cc1e66ee938ef7261e8979462194
|
6.0 GB | Download |
md5:afe4ebe442c3c500b2322f3c68b78cbf
|
4.2 GB | Download |
md5:0ddff02f0c7f5da2b8ec609b4813ac7d
|
4.4 GB | Download |
md5:d3498695c77b3de2dd37322fff30802e
|
6.7 GB | Download |
md5:c6327bf2b93f8a44bd4df859e518c80c
|
5.3 GB | Download |
md5:7f937817c08b82bcac504114ffb2e369
|
3.7 GB | Download |
md5:6861761e9893d094c901242901d6f151
|
5.0 GB | Download |
md5:5e9c21401520d4478d6b306f7ef63035
|
7.7 GB | Download |
md5:f2a8dcabc54798c2928eac7238d098f4
|
7.1 GB | Download |
md5:be9e7bc2b0fa048f918b4c55a115e0a2
|
4.1 GB | Download |
md5:625b4bd82e405d12d24a09f86e72e20f
|
354.1 MB | Download |
md5:b547c4772d5e1939f33913e770a4de8b
|
2.4 kB | Download |
md5:b289f23e12a981d1ff8da68ee99a3d39
|
3.2 kB | Preview Download |
Additional details
Funding
References
- van de Plassche, K.L. et al. (2019)