Published June 6, 2023 | Version 1.0.0
Dataset Open

QLKNN11D training set

  • 1. DIFFER
  • 1. Aix-Marseille University (CNRS)
  • 2. Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache
  • 3. DIFFER
  • 4. Eindhoven University of Technology

Description

QLKNN11D training set

This dataset contains a large-scale run of ~1 billion flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. QuaLiKiz is applied in numerous tokamak integrated modelling suites, and is openly available at https://gitlab.com/qualikiz-group/QuaLiKiz/. This dataset was generated with the 'QLKNN11D-hyper' tag of QuaLiKiz, equivalent to 2.8.1 apart from the negative magnetic shear filter being disabled. See https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags/QLKNN11D-hyper for the in-repository tag.

The dataset is appropriate for the training of learned surrogates of QuaLiKiz, e.g. with neural networks. See https://doi.org/10.1063/1.5134126 for a Physics of Plasmas publication illustrating the development of a learned surrogate (QLKNN10D-hyper) of an older version of QuaLiKiz (2.4.0) with a 300 million point 10D dataset. The paper is also available on arXiv https://arxiv.org/abs/1911.05617 and the older dataset on Zenodo https://doi.org/10.5281/zenodo.3497066. For an application example, see Van Mulders et al 2021 https://doi.org/10.1088/1741-4326/ac0d12, where QLKNN10D-hyper was applied for ITER hybrid scenario optimization. For any learned surrogates developed for QLKNN11D, the effective addition of the alphaMHD input dimension through rescaling the input magnetic shear (s) by s = s - alpha_MHD/2, as carried out in Van Mulders et al., is recommended.

Related repositories:

Data exploration

The data is provided in 43 netCDF files. We advise opening single datasets using xarray or multiple datasets out-of-core using dask. For reference, we give the load times and sizes of a single variable that just depends on the scan size `dimx` below. This was tested single-core on a Intel Xeon 8160 CPU at 2.1 GHz and 192 GB of DDR4 RAM. Note that during loading, more memory is needed than the final number.

Timing of dataset loading
Amount of datasets Final in-RAM memory (GiB)

Loading time single var

(M:SS)
1 10.3 0:09
5 43.9 1:00
10 63.2 2:01
16 98.0 3:25
17 Out Of Memory x:xx

Full dataset

The full dataset of QuaLiKiz in-and-output data is available on request. Note that this is 2.2 TiB of netCDF files!

Notes

EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)

Files

README.md

Files (248.0 GB)

Name Size Download all
md5:9aaa2eb98b51ac9daae5960e56f3ce0e
1.5 kB Download
md5:23bc938f6deacdecd4ed4c4c030014cb
6.4 GB Download
md5:b4debcc81e7378d55402d9a2a768413f
8.6 GB Download
md5:b1d3abb12ffd603ba8624134ac3afc97
6.4 GB Download
md5:263d47da4e03531ebc6f50a0fbca6554
4.0 GB Download
md5:b959abfd2e2767b63de98edc65c68acc
7.1 GB Download
md5:1b1ceb5e49444021e9c0386bf49e73a8
8.2 GB Download
md5:04f3dbcd1d2dde7a1d29469c8926e76d
5.9 GB Download
md5:49bec20eedbcc9a2f91552068395906c
4.6 GB Download
md5:d798902186617be25b1fbadfa521e08a
7.2 GB Download
md5:3ce0ee2af98a29e2853499d463130dff
7.8 GB Download
md5:d362351148246191d1898d743a0baee3
5.2 GB Download
md5:4e526923227086b8efad159e0c7b2618
4.8 GB Download
md5:1c23d0d927fd4dd0b62a81b6db6d79c3
7.9 GB Download
md5:330f47c71c2145079051922c9281cc3f
6.8 GB Download
md5:668c3aa7023a7473dd4e29137fcb0519
4.7 GB Download
md5:490f879ebd38f2689594d3b89b827c7f
4.9 GB Download
md5:a47dac3eacd150839c4b5513971bc196
8.1 GB Download
md5:5c39600eb0596f822681162fcccf6b5f
6.6 GB Download
md5:ecbcf1f3e589db4a9c463eb0214614d4
3.7 GB Download
md5:e0574790a13ed7f41eda6db46e937131
5.6 GB Download
md5:9970289792a52e1031754ab25dfcd297
8.2 GB Download
md5:ae1117303290d09b06c50118e4e98e1f
5.8 GB Download
md5:7b9d8c34e34b9c2332ca626407f4b6df
3.6 GB Download
md5:e16815de8a91190ef89629729258a4bd
6.4 GB Download
md5:09d28e38fbe8bc216e0830d465e168ef
7.4 GB Download
md5:c94503f78eb91251d9935fec0406d76d
5.4 GB Download
md5:1459ca9f36c1a329ff502e771ee34ba8
3.7 GB Download
md5:f336aa7913da9bcfa887765bc5cc5290
6.5 GB Download
md5:49a846a30fea675582db2907542a8142
6.8 GB Download
md5:fcb1dbea187ba01e7d0bde63d243aa0e
4.7 GB Download
md5:49005c7ce5987195c3bb2e93d40bf654
4.3 GB Download
md5:00383f3aec96b30a78147aac7b56504f
6.3 GB Download
md5:5ce7cc1e66ee938ef7261e8979462194
6.0 GB Download
md5:afe4ebe442c3c500b2322f3c68b78cbf
4.2 GB Download
md5:0ddff02f0c7f5da2b8ec609b4813ac7d
4.4 GB Download
md5:d3498695c77b3de2dd37322fff30802e
6.7 GB Download
md5:c6327bf2b93f8a44bd4df859e518c80c
5.3 GB Download
md5:7f937817c08b82bcac504114ffb2e369
3.7 GB Download
md5:6861761e9893d094c901242901d6f151
5.0 GB Download
md5:5e9c21401520d4478d6b306f7ef63035
7.7 GB Download
md5:f2a8dcabc54798c2928eac7238d098f4
7.1 GB Download
md5:be9e7bc2b0fa048f918b4c55a115e0a2
4.1 GB Download
md5:625b4bd82e405d12d24a09f86e72e20f
354.1 MB Download
md5:b547c4772d5e1939f33913e770a4de8b
2.4 kB Download
md5:b289f23e12a981d1ff8da68ee99a3d39
3.2 kB Preview Download

Additional details

Funding

GN4-3 – Horizon 2020: H2020-SGA-INFRA-GEANT-2018 (Topic [a] Research and Education Networking) 856726
European Commission

References

  • van de Plassche, K.L. et al. (2019)