Harmonised culture procedures minimise but do not eliminate mesenchymal stromal cell donor and tissue variability in a decentralised multicentre manufacturing approach
Creators
- 1. College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- 2. Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service, Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany
- 3. Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
- 4. Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
Description
Background
Mesenchymal stromal cells (MSCs), commonly sourced from adipose tissue, bone marrow and umbilical cord, have been widely used in many medical conditions due to their therapeutic potential. Yet, the still limited understanding of the underlying mechanisms of action hampers clinical translation. Clinical potency can vary considerably depending on tissue source, donor attributes, but importantly, also culture conditions. Lack of standard procedures hinders inter-study comparability and delays the progression of the field. The aim of this study was A- to assess the impact on MSC characteristics when different laboratories, performed analysis on the same MSC material using harmonised culture conditions and B- to understand source-specific differences.
Methods
Three independent institutions performed a head-to-head comparison of human-derived adipose (A-), bone marrow (BM-), and umbilical cord (UC-) MSCs using harmonised culture conditions. In each centre, cells from one specific tissue source were isolated and later distributed across the network to assess their biological properties, including cell expansion, immune phenotype, and tri-lineage differentiation (part A). To assess tissue-specific function, angiogenic and immunomodulatory properties and the in vivo biodistribution were compared in one expert lab (part B).
Results
By implementing a harmonised manufacturing workflow, we obtained largely reproducible results across three independent laboratories in part A of our study. Unique growth patterns and differentiation potential were observed for each tissue source, with similar trends observed between centres. Immune phenotyping verified expression of typical MSC surface markers and absence of contaminating surface markers. Depending on the established protocols in the different laboratories, quantitative data varied slightly. Functional experiments in part B concluded that conditioned media from BM-MSCs significantly enhanced tubulogenesis and endothelial migration in vitro. In contrast, immunomodulatory studies reported superior immunosuppressive abilities for A-MSCs. Biodistribution studies in healthy mice showed lung entrapment after administration of all three types of MSCs, with a significantly faster clearance of BM-MSCs.
Conclusion
These results show the heterogeneous behaviour and regenerative properties of MSCs as a reflection of intrinsic tissue-origin properties while providing evidence that the use of harmonised culture procedures can reduce but do not eliminate inter-lab and operator differences.
Notes
Files
s13287-023-03352-1.pdf
Files
(2.9 MB)
Name | Size | Download all |
---|---|---|
md5:957d5bfef75ab8b2fb1d3b68834fe7d0
|
2.9 MB | Preview Download |