Published August 5, 2019 | Version v1
Journal article Restricted

Structural and magnetic properties of silica-coated magnetite nanoaggregates

  • 1. Departamento de Física, Universidad de Los Andes, 5101 Mérida, Venezuela
  • 2. Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain
  • 3. Departamento de Física and CEDENNA, Universidad de Santiago de Chile, 9170124, Santiago, Chile

Description

Magnetite nanoparticles were synthesized by the coprecipitation method. Additionally, two composites of silica-coated magnetite nanoparticles were synthesized by the Stöber method. The synthesized nanocompounds were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy and vibrating sample magnetometry. The magnetite nanoparticles have a single crystalline phase corresponding to the cubic spinel structure. The magnetite nanocompound is formed by faceted nanoparticles with a mean size of 9 nm, while the composites consist mainly of aggregates of magnetite nanoparticles coated with silica, with mean sizes of 22 and 55 nm. The magnetization measurements of the three nanocompounds suggest that the nanoparticles are in the superparamagnetic regime at room temperature, with a small amount of nanoparticles in the blocked regime.

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Additional details

References

  • W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater. 16 (2015) 023501, , https://doi.org/10.1088/1468- 6996/16/2/023501.
  • I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater. 324 (2012) 903–915, https://doi. org/10.1016/j.jmmm.2011.10.017.
  • K.C. Barick, S. Singh, D. Bahadur, M.A. Lawande, D.P. Patkar, P.A. Hassan, Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia, J. Colloid Interface Sci. 418 (2014) 120–125, https://doi.org/10.1016/j.jcis.2013.11. 076.
  • S. Hazra, N.N. Ghosh, Preparation of nanoferrites and their applications, J. Nanosci. Nanotechnol. 14 (2014) 1983–2000, https://doi.org/10.1166/jnn.2014.8745.
  • D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J. 129 (2007) 51–65, https://doi.org/10.1016/j.cej.2006.11.001.
  • G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, T.S. Berquo, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94 (2003) 3520, https://doi.org/10.1063/1.1599959.
  • Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 9894, https://doi.org/10.1038/s41598- 017-09897-5.
  • A.G. Roca, M.P. Morales, K. O'Grady, C.J. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors, Nanotechnology 17 (2006) 2783–2788, https://doi.org/10. 1088/0957-4484/17/11/010.
  • H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, J. Colloid Interface Sci. 314 (2007) 274–280, https://doi.org/10.1016/j.jcis.2007.05.047.
  • D. Maity, S.-G. Choo, J. Yi, J. Ding, J.M. Xue, Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route, J. Magn. Magn. Mater. 321 (2009) 1256–1259, https://doi.org/10.1016/j.jmmm.2008.11.013.
  • F. Morales, V. Sagredo, T. Torres, G. Márquez, Characterization of magnetite nanoparticles synthesized by the coprecipitation method, Cienc. e Ing. 40 (2019) 39–44.
  • A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. Engl. 46 (2007) 1222–1244, https://doi.org/10.1002/anie.200602866.
  • W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62–69, https://doi.org/10. 1109/ICOSP.2006.345929.
  • A.P. Philipse, M.P.B. Van Bruggen, C. Pathmamanoharan, Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core, Langmuir 10 (1994) 92–99, https://doi.org/10.1021/la00013a014.
  • Z. Lu, J. Dai, X. Song, G. Wang, W. Yang, Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles, Colloids Surfaces A Physicochem. Eng. Asp. 317 (2008) 450–456, https://doi.org/10.1016/j.colsurfa.2007.11.020.
  • G. Marcelo, F. Catalina, I. Bruvera, C. Marquina, G. Goya, Specific power absorption of silica-coated magnetite cubes, Curr. Nanosci. 10 (2014) 676–683, https://doi. org/10.2174/1573413710666140609223503.
  • J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery, Angew. Chem. Int. Ed. 47 (2008) 8438–8441, https://doi.org/10. 1002/anie.200802469.
  • K. Faaliyan, H. Abdoos, E. Borhani, S.S.S. Afghahi, Magnetite-silica nanoparticles with core-shell structure: single-step synthesis, characterization and magnetic behavior, J. Sol. Gel Sci. Technol. 88 (2018) 609–617, https://doi.org/10.1007/ s10971-018-4847-z.
  • N. Pérez, C. Moya, P. Tartaj, A. Labarta, X. Batlle, Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating, J. Appl. Phys. 121 (2017) 044304, , https://doi.org/10.1063/1.4974532.
  • P.S. Haddad, E.L. Duarte, M.S. Baptista, G.F. Goya, C.A.P. Leite, R. Itri, Synthesis and characterization of silica-coated magnetic nanoparticles, Surf. Colloid Sci. Springer, Berlin, Heidelberg, 2004, pp. 232–238, , https://doi.org/10.1007/ b97092.
  • E. Ghasemi, M. Ghahari, Synthesis of silica coated magnetic nanoparticles, Int. J. Nanosci. Nanotechnol. 11 (2015) 133–137.
  • V. Salgueiriño-Maceira, M.A. Correa-Duarte, M. Spasova, L.M. Liz-Marzán, M. Farle, Composite silica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater. 16 (2006) 509–514, https://doi.org/10.1002/adfm.200400469.
  • H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: for Polycrystalline and Amorphous Materials, second ed., Wiley-VCH, New York, 1974.
  • R.D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99 (1955) 1727–1735, https:// doi.org/10.1103/PhysRev.99.1727.
  • J.S. Micha, B. Dieny, J.R. Régnard, J.F. Jacquot, J. Sort, Estimation of the Co nanoparticles size by magnetic measurements in Co/SiO2 discontinuous multilayers, J. Magn. Magn. Mater. 272–276 (2004) 2003–2004, https://doi.org/10.1016/j. jmmm.2003.12.268.
  • M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems, J. Nanosci. Nanotechnol. 8 (2008) 2836–2857, https:// doi.org/10.1166/jnn.2008.017.
  • B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second ed., IEEE Press, New York, 2009.