Published January 8, 2018 | Version v1
Journal article Open

Scott's Qualitative Fixed Point Technique in Complexity Analysis of Algorithms

  • 1. Juniper Innovating Travel Technology, Gremis Fusters, 33, Balearic Islands, Spain
  • 2. Department of Mathematical Sciences and Informatics, University of the Balearic Islands, Ctra, Baleares, Spain

Description

Abstract

In 1972, D.S. Scott developed a qualitative mathematical technique for modeling the meaning of recursive specifications in Deno-tational Semantics. In this paper we show that the same original Scott’s technique remains helpful for Asymptotic Complexity Analy-sis of algorithms requiring really a reduced number of hypotheses and elementary arguments. Thus, we will disclose that such a qualitative approach presents a uni ed mathematical method that is useful for Asymptotic Complexity Analysis and Denotational Semantics. More-over, we will emphasize the introduced technique applying the results to provide the asymptotic complexity (upper and lower bounds) of the running time of computing of a celebrated algorithm.

2010 AMS Classification: 47H10, 54F05, 68N30, 68Q55, 68Q25, 68W40

Notes

Advances in Computer Sciences (ISSN:2517-5718)

Files

acs-1-101.pdf

Files (534.8 kB)

Name Size Download all
md5:8082939156c58added208f780014d81b
534.8 kB Preview Download

Additional details

References

  • Davey BA, Priestley HA. Introduction to Lattices and Order. Cambridge University Press, Cambridge; 1990.
  • Scott DS. Outline of a mathematical theory of computation, in: Proc. 4th Annual Princeton Conference on Information Sciences and Systems. 1970; 169-176.
  • CA Gunter, DS Scott. Semantic domains, in: Handbook of Theoretical Computer Science, ed. by J van Leewen. 1990; Vol. B; MIT Press, Cambridge: 663-674.
  • Stoy JE. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT Press, Cambridge; 1977.
  • Schellekens MP. The Smyth completion: a common foundationfor the denotational semantics and complexity analysis. ElectronNotes Theor Comput Sci. 1995; 1: 535-556.
  • Hitzler P, Seda AK. Mathematical Aspects of Logic Programming Semantics. CRC Press, Boca Raton; 2011.
  • Alghamdi MA, Shahzad N, Valero O. Fixed point theorems in generalized metric spaces with applications to Computer Science. Fixed Point Theory A. 2013; 2013: 118.
  • Alghamdi MA, Shahzad N, Valero O. On fixed point theory intopological posets, extended quasi-metrics and an applicationto asymptotic complexity analysis of algorithms. Fixed PointTheory A. 2015; 2015: 179.
  • Uguet MAC, Schellekens MP, Valero O. The Baire partial quasimetric space: a mathematical tool for the asymptotic complexityanalysis in Computer Science. Theor Comput Syst. 2012; 50:387-399.
  • Garcia RLM, Romaguera S, Schellekens MP. Applications ofthe complexity space to the general probabilistic Divide andConquer algorithms. J Math Anal Appl. 2008; 348: 346-355.
  • Z Mohammadi, O Valero. A new contribution to fixed point theoryin partial quasi-metric spaces and its applications to asymptoticcomplexity analysis of algorithms. Topol Appl. 2016; 203: 42-56.
  • Lopez JR, Schellekens MP, Valero O. An extension of the dualcomplexity space and an application to Computer Science. TopolAppl. 2009; 156: 3052-3061.
  • Romaguera S, Schellekens MP. Quasi-metric properties ofcomplexity spaces. Topol Appl. 1999; 98: 311-322.
  • Romaguera S, Schellekens MP, Valero O. The complexity spaceof partial functions: A connection between Complexity Analysisand De-notational Semantics. Int J Comput Math. 2011; 88:1819-1829.
  • Romaguera S, Tirado P, Valero O. New results on mathematicalfoundations of asymptotic complexity analysis of algorithms viacomplexity spaces. Int J Comput Math. 2012; 89: 1728-1741.
  • Romaguera S, Valero O. A common mathematical frameworkfor asymptotic complexity analysis and denotational semanticsfor recur-sive programs based on complexity spaces. AdvanTheories Math Models. 2012; 1: 99-120.
  • Baranga A. The contraction principle as a particular case ofKleene's fixed point theorem. Discrete Math. 1991; 98: 75-79.
  • G Brassard, P Bratley. Algorithms: Theory and Practice, Prentice Hall, New Jersey; 1988.
  • M Kao. Multiple-size divide-and-conquer recurrences. ACMSIGACT News. 1997; 28: 67-69.
  • Cull P, Flahive R, Robson R. Difference Equations: from Rabbitsto Chaos. Springer, New York; 1985.
  • Blum M, Floyd R, Pratt V, Rivest R, Tarjan R. Time bounds forselection. J Comput Syst Sci. 1973; 7: 448-461.
  • Cormen TH, Leiserson CE, Rivest RL. Introduction to Algorithms,MIT Press. New York; 1990.
  • Wang X, Fu Q. A frame for general divide-and-conquerrecurrences. Inform Process Lett. 1996; 59: 45-51.
  • R Miller, L Boxed. Algorithms Sequential and Parallel: A UnifiedApproach (Charles River Media) Hingham; 2005.