Published May 5, 2023 | Version v1
Software Open

Statistical-Physical Adversarial Learning from Data and Models for Extreme Rainfall Downscaling

  • 1. Massachusetts Institute of Technology

Description

Codes for downscaling model training, and evaluation for the study "Statistical-Physical Adversarial Learning from Data and Models for Extreme Rainfall Downscaling".

Files

README.md

Files (539.8 MB)

Name Size Download all
md5:4ae7f3bd5d02665d959c3091bfe169e8
16.6 kB Preview Download
md5:4d234709fbb69ee389506d60d09e77cb
1.1 kB Download
md5:320a3158bb2d4d44b4bc0b0d95ac8f8b
2.7 kB Preview Download
md5:97f9047947926533ff1df8fed1d990c3
22.3 kB Preview Download
md5:3564db6db275d9d66a3faaf5115f6494
3.9 kB Preview Download
md5:31596a0112fa862cb08331f3a830cc41
202.6 kB Preview Download
md5:eab57cf10485d96f276d367332146219
102.1 kB Preview Download
md5:17a50a09ea531eacb0861cf8cd811cda
22.6 kB Preview Download
md5:6b312d71a8ccbe1db818d735f54559ec
108.7 MB Download
md5:d21c4107f0ce4faa8a644dc4fd1f50b5
22.2 kB Preview Download
md5:9ef825531f5bfd3c4ab186fa98971c03
106.7 MB Download
md5:14283cba7816696ac093066c8ce8a2a0
23.8 kB Preview Download
md5:19d6ae78a09c50ae7d554eb00cd4cec2
106.7 MB Download
md5:d1329846662a676dcd6a26f7255c2aeb
23.8 kB Preview Download
md5:b9a2b8bcf9f05d2365c33006ce242323
106.8 MB Download
md5:2b45a7fef579a8af555de12baf71c496
23.2 kB Preview Download
md5:97b579b6aa205ffb773aa7d2a967ebe2
109.9 MB Download
md5:81ac404e49ecf5a77ba58422ec5208bd
5.5 kB Preview Download
md5:6031000c290defe49574cb7073f3a52a
1.1 kB Download
md5:8438210f07be0baf225eaa6405396eaf
1.1 kB Download
md5:13696690b281e90024a42d59d177c88d
976 Bytes Download
md5:ec6bee3737f4f3beae8a38b0cca72ecc
10.7 kB Preview Download
md5:8025741bf5de5ae6f2ed6e91dc713acc
8.9 kB Preview Download
md5:3b028b0865c9f0fd08b220d96f038bfe
5.6 kB Download
md5:e1ec9089ed2f70077b4088242ccdc533
2.5 kB Download
md5:060a5ab4fffe679d8e1e33597cca42f3
386.4 kB Preview Download
md5:040a884a9c909ebf4b2aa0384244be66
1.9 kB Preview Download
md5:d756608f198f68c0e0a4d2cafe9d65a0
8.7 kB Preview Download

Additional details

Related works

Is variant form of
Preprint: 10.48550/arXiv.2212.01446 (DOI)