Published May 2, 2023 | Version V0.1.2.1
Journal article Open

Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data

  • 1. City University of Hong Kong

Description

These are source codes, example data, and example usage of SCOIT (https://github.com/deepomicslab/SCOIT). 

SCOIT is an implementation of a probabilistic tensor decomposition framework for single-cell multiomic data integration. SCOIT accepts the input of datasets from multiple omics, with missing values allowed.

The example data contains the eight single-cell multiomic datasets (sc-GEM, SNARE-seq_adult_mouse, SNARE-seq_neonatal_mouse, sci-CAR, PEA-STA, CITE-seq, SCoPE2, scNMT-seq), which are used in the manuscript.

The example usage contains codes to analyse the eight datasets with SCOIT.

Files

example_data.zip

Files (99.9 MB)

Name Size Download all
md5:44c103cc6311c274c62b556ab69be0c7
92.4 MB Preview Download
md5:38f55628d6389582eb1b1f6b7ab25537
7.5 MB Preview Download
md5:8d50c7655bce64ffd9e83996581648eb
40.3 kB Preview Download