scRNAseq_Dataset Merge AMI d5 (CD45+Fibroblast) + AAA Kinetik + Cite-Seq_Dataset AG Gerdes
Creators
Description
Integration Skript:
library(Seurat)
library(tidyverse)
library(Matrix)
#cite <- readRDS("C:/Users/alex/sciebo/ALL_NGS/scRNAseq/scRNAseq/Merge AAA mit Cite AAA/Cite_seq_v0.41.rds")
#CD45 <- readRDS("C:/Users/alex/sciebo/ALL_NGS/scRNAseq/scRNAseq/Schrader/Fertige_Analysen/TS_d5_paper/CD45.rds")
AAA <- readRDS("C:/Users/alex/sciebo/AAA_Zhao_v4.rds")
cite <- readRDS("C:/Users/alex/sciebo/CITE_Seq_v0.5.rds")
all4 <- readRDS("C:/Users/alex/sciebo/ALL_NGS/scRNAseq/scRNAseq/Schrader/Fertige_Analysen/Schrader_All4_Rohanalyse/all4_220228.rds")
#fuse lists
c <- list(cite, all4, AAA)
names(c) <- c("cite", "all4", "AAA")
pancreas.list <- c[c("cite", "all4", "AAA")]
for (i in 1:length(pancreas.list)) {
pancreas.list[[i]] <- SCTransform(pancreas.list[[i]], verbose = FALSE)
}
pancreas.features <- SelectIntegrationFeatures(object.list = pancreas.list, nfeatures = 3000)
#options(future.globals.maxSize= 6091289600)
#pancreas.list <- PrepSCTIntegration(object.list = pancreas.list, anchor.features = pancreas.features,
#verbose = FALSE) #future.globals.maxsize was to low. changed it to options(future.globals.maxSize= 1091289600)
#identify anchors
#alternative from tutorial (https://satijalab.org/seurat/articles/integration_introduction.html)
#memory.limit(9999999999)
features <- SelectIntegrationFeatures(object.list = pancreas.list, nfeatures = 3000)
pancreas.list <- PrepSCTIntegration(object.list = pancreas.list, anchor.features = features)
pancreas.anchors <- FindIntegrationAnchors(object.list = pancreas.list, normalization.method = "SCT", anchor.features = pancreas.features, verbose = FALSE)
pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, normalization.method = "SCT",
verbose = FALSE)
setwd("C:/Users/alex/sciebo/ALL_NGS/scRNAseq/scRNAseq/Schrader/Fertige_Analysen/TS_d5_paper")
saveRDS(pancreas.integrated, file = "integrated_AAA_Cite_AMI.rds")
saveRDS(cd45, file = "integrated_AAA_Cite_CD45.rds")
seurat <- pancreas.integrated
#seurat <- readRDS("C:/Users/alex/sciebo/ALL_NGS/scRNAseq/scRNAseq/Schrader/Fertige_Analysen/TS_d5_paper/integrated_d5_cite.rds")
DefaultAssay(object = seurat) <- "integrated"
seurat <- FindVariableFeatures(seurat, selection.method = "vst", nfeatures = 3000)
seurat <- ScaleData(seurat, verbose = FALSE)
seurat <- RunPCA(seurat, npcs = 30, verbose = FALSE)
seurat <- FindNeighbors(seurat, dims = 1:30)
seurat <- FindClusters(seurat, resolution = 0.5)
seurat <- RunUMAP(seurat, reduction = "pca", dims = 1:30)
DimPlot(seurat, reduction = "umap", split.by = "treatment") + NoLegend()
DimPlot(seurat, label = T, repel = T) + NoLegend()
DefaultAssay(object = seurat) <- "ADT"
adt_marker_integrated <- FindAllMarkers(seurat, logfc.threshold = 0.3)
write.csv(adt_marker_integrated, file = "adt_marker_all4_integrated.csv")
DefaultAssay(object = seurat) <- "RNA"
RNA_marker_integrated <- FindAllMarkers(seurat, logfc.threshold = 0.5)
write.csv(RNA_marker_integrated, file = "RNA_marker_all4_integrated.csv")
DimPlot(seurat, label = T, repel = T, split.by = "tissue") + NoLegend()
FeaturePlot(seurat, features = "Cd40", order = T, label = T)
FeaturePlot(seurat, features = "Ms.CD40", order = T, label = T)
#####
#leanup:
> seurat@meta.data[["sen_score1"]] <- NULL
> seurat@meta.data[["sen_score2"]] <- NULL
> seurat@meta.data[["sen_score3"]] <- NULL
> seurat@meta.data[["sen_score4"]] <- NULL
> seurat@meta.data[["sen_score5"]] <- NULL
> seurat@meta.data[["sen_score6"]] <- NULL
> seurat@meta.data[["sen_score7"]] <- NULL
> seurat@meta.data[["pANN_0.25_0.1_1211"]] <- NULL
> seurat@meta.data[["DF.classifications_0.25_0.1_1211"]] <- NULL
> seurat@meta.data[["DF.classifications_0.25_0.1_466"]] <- NULL
> seurat@assays[["prediction.score.celltype"]] <- NULL
> seurat@meta.data[["predicted.celltype"]] <- NULL
> seurat@meta.data[["DF.classifications_0.25_0.1_184"]] <- NULL
> seurat@meta.data[["DF.classifications_0.25_0.1_953"]] <- NULL
> seurat@meta.data[["integrated_snn_res.3"]] <- NULL
> seurat@meta.data[["RNA_snn_res.3"]] <- NULL
> seurat@meta.data[["SingleR"]] <- NULL
> seurat@meta.data[["SingleR_fine"]] <- NULL
> seurat@meta.data[["ImmGen"]] <- NULL
> seurat@meta.data[["ImmGen_fine"]] <- NULL
> seurat@meta.data[["percent.mt"]] <- NULL
> seurat@meta.data[["nCount_integrated"]] <- NULL
> seurat@meta.data[["nFeature_integrated"]] <- NULL
> seurat@meta.data[["S.Score"]] <- NULL
> seurat@meta.data[["G2M.Score"]] <- NULL
> seurat@meta.data[["Phase"]] <- NULL
> seurat@meta.data[["sen_score8"]] <- NULL
> seurat@meta.data[["sen_score9"]] <- NULL
> seurat@meta.data[["sen_score10"]] <- NULL
> seurat@meta.data[["sen_score11"]] <- NULL
> seurat@meta.data[["sen_score12"]] <- NULL
> seurat@meta.data[["sen_score13"]] <- NULL
> seurat@meta.data[["sen_score14"]] <- NULL
> seurat@meta.data[["sen_score15"]] <- NULL
> seurat@meta.data[["sen_score16"]] <- NULL
> seurat@meta.data[["sen_score17"]] <- NULL
> seurat@meta.data[["sen_score18"]] <- NULL
> seurat@meta.data[["sen_score19"]] <- NULL
seurat@meta.data[["pANN_0.25_0.1_184"]] <- NULL
seurat@meta.data[["pANN_0.25_0.1_953"]] <- NULL
seurat@meta.data[["pANN_0.25_0.1_466"]] <- NULL