Surface Reflectance Data for Mapping Lunar Swirls Using Machine Learning
Contributors
- 1. Planetary Science Institute
Description
Final surface reflectance data at 2.6 m/pixel resolution with floating point values (i.e., data with decimals) are available in two formats, GeoTiff and ASCII text files. See README file for further details.
Data used in the research article:
Chuang, F.C., M.D. Richardson, J.R. Weirich, A.A. Sickafoose, and D.L. Domingue, 2022. Mapping Lunar Swirls with Machine Learning: The Application of Unsupervised and Supervised Image Classification Algorithms in Reiner Gamma and Mare Ingenii. The Planetary Science Journal, 3:231. doi://10.3847/PSJ/ac8f43
Files
Chuangetal_PSJ_Reflectance_MareIngenii_ASCII.zip
Files
(121.6 MB)
Name | Size | Download all |
---|---|---|
md5:38bd848d5f16d8472b5f1a53c45f404c
|
34.8 MB | Preview Download |
md5:710c853ae1eae8d905a47c18af757c38
|
32.6 MB | Preview Download |
md5:2346313edd268842a13bdac93130fdd1
|
17.1 kB | Download |
md5:cb595eb4880bad472160177c8704cf54
|
4.0 kB | Preview Download |
md5:2e8d473112baaa5315fffdae60686a6e
|
27.7 MB | Preview Download |
md5:a0ef19aced250b24a374932b9213ea85
|
26.4 MB | Preview Download |
Additional details
Related works
- Is described by
- Journal article: 10.3847/PSJ/ac8f43 (DOI)
References
- Chuang, F.C., M.D. Richardson, J.R. Weirich, A.A. Sickafoose, and D.L. Domingue, 2022. Mapping Lunar Swirls with Machine Learning: The Application of Unsupervised and Supervised Image Classification Algorithms in Reiner Gamma and Mare Ingenii. The Planetary Science Journal, 3:231. doi://10.3847/PSJ/ac8f43