Published March 1, 2023 | Version v1
Journal article Open

Study and innovation of effective classification of XML documents using an advanced deep learning approach

  • 1. Department of Computer Science, Hindustan Institute of Technology and Science, Kelambakkam, India
  • 2. Department of Computer Science, Pondicherry University, India

Description

In the digital world, classifying real sensed data in huge volumes derived from numerical problems is a challenging task due to the computational complexity of the metaheuristic searching process. The deep learning approach includes convolutional neural network (CNN), long short-term memory (LSTM), and Bidirectional (BI)-LSTM, suitable for an optimistic processing time of analyzing XML datasets (i.e., social media, trade center, and surveillance data exchanged in the internet world). However, it faces process deviation when datasets extend their range beyond the expected volume. This paper proposes a novel deep learning formwork referred to as archimed improved numerical optimization deep learning (AINODL) to improve the classification of XML datasets. The proposed AINODL framework first extracts feature from XML documents using the vector space model. Secondly, it classifies the XML data using the inbuilt function of the AINODL framework. The experiments demonstrate that the performance parameters accuracy (90%), sensitivity (93%), and specificity (94%) of the proposed AINODL framework are significantly enhanced compared with the existing approaches CNN, LSTM, and BI-LSTM.

Files

30141-60504-1-PB.pdf

Files (636.3 kB)

Name Size Download all
md5:d1852a57e1401841aca5faf6a9e8918e
636.3 kB Preview Download