SinoLC-1: the first 1-meter resolution national-scale land-cover map of China created with the deep learning framework and open-access data (Northeast of China)
Creators
- 1. Wuhan University
- 2. China University of Geosciences
Description
The Version Northeast of China includes the SinoLC-1 land-cover product for the provincial administrative regions of Heilongjiang, Jilin, and Liaoning.
Click to check all the data versions and download the data (点击查看/下载所有数据版本)
NOTE: If you have any data needs, questions, or technical issues, contact us at ashelee@whu.edu.cn (Zhuohong Li, 李卓鸿).
The land-cover mapping method with Python code is open-access at Code link. You can now update the high-resolution land-cover map by yourself with the code! The updated method is accepted by CVPR 2024 (Paper link).
我们的最新制图算法被计算机视觉顶会CVPR2024接收(Paper link),代码开源在:Code link,您可以利用该代码高效地更新自己数据集的高分土地覆盖图。
Citation format of the paper:
Li, Z., He, W., Cheng, M., Hu, J., Yang, G., and Zhang, H.: SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data, Earth Syst. Sci. Data, 15, 4749–4780, 2023.
Li, Z., Zhang, H., Lu, F., Xue, R., Yang, G. and Zhang, L.: Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels, ISPRS Journal of Photogrammetry and Remote Sensing. 192, pp.244-267, 2022.
BibTex format of the paper:
@article{li2023sinolc, title={SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data}, author={Li, Zhuohong and He, Wei and Cheng, Mofan and Hu, Jingxin and Yang, Guangyi and Zhang, Hongyan}, journal={Earth System Science Data}, volume={15}, number={11}, pages={4749--4780}, year={2023}, publisher={Copernicus Publications G{\"o}ttingen, Germany} }@article{li2022breaking, title={Breaking the resolution barrier: A low-to-high network for large-scale high-resolution land-cover mapping using low-resolution labels}, author={Li, Zhuohong and Zhang, Hongyan and Lu, Fangxiao and Xue, Ruoyao and Yang, Guangyi and Zhang, Liangpei}, journal={ISPRS Journal of Photogrammetry and Remote Sensing}, volume={192}, pages={244--267}, year={2022}, publisher={Elsevier} }