Published February 9, 2023 | Version v1
Dataset Open

Predicted occurrence probability for ticks in Great Britain (2014 to 2021) at 1 km spatial resolution

  • 1. OpenGeoHub foundation
  • 2. CIRAD

Description

The dataset contains predictions of occurrence probability for ticks in Great Britain (2014 to 2021) at 1 km spatial resolution + all covariate layers used for modeling. Over seven million electronic health records (EHRs), among which 11,741 EHRs reported tick attachment, were used to evaluate climate, environmental and animal host factors affecting the risk of tick attachment in cats and dogs in Great Britain (GB). The tick presence/absence EHRs for dogs and cats were further overlaid with spatiotemporal time-series of climatic, vegetation, human influence, hydrological and terrain variables (slope, wetness index) to produce a spatiotemporal regression matrix; an Ensemble Machine Learning framework was used to fine-tune hyperparameters for Random Forest (classif.ranger), Gradient boosting (classif.xgboost) and GLM-net (classif.glmnet) algorithms, which were then used to produce a final ensemble meta-learner that predicts the probability of occurrence of ticks across GB with monthly intervals.

  • gb1km_covariates.zip contains ALL covariate layers as GeoTIFFs (time-series) used for modeling ticks dynamics;
  • data_1km_2014_M01.rds = contains all covariates for January 2014 prepared as SpatialGridDataFrame (R data object);

Codes of files indicate e.g.:

  • "monthly.tick.prob_savsnet.mar_p_1km_s_2014_2021" = monthly occurrence probability for January based on the training data from 2014 to 2021;
  • "monthly.tick.prob_savsnet.oct_md_1km_s_20211001_20211031" = monthly prediction (model) error derived as the standard deviation from multiple base learners;

The dataset is described in detail in the following publication:

  • Arsevska, E., Hengl, T., Singelton, D. et al. (2023?) Risk factors for tick attachment in companion animals in Great Britain: a spatiotemporal analysis covering 2014–2021. Submitted to Parasites & Vectors (in review).

The model summary shows:

Call:
stats::glm(formula = f, family = "binomial", data = getTaskData(.task, 
    .subset), weights = .weights, model = FALSE)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4749  -0.0557  -0.0471  -0.0430   3.7611  

Coefficients:
                 Estimate Std. Error  z value Pr(>|z|)    
(Intercept)      -7.64495    0.02095 -364.957  < 2e-16 ***
classif.ranger    4.95061    0.63615    7.782 7.13e-15 ***
classif.xgboost 189.75543    5.53109   34.307  < 2e-16 ***
classif.glmnet  140.24208    5.05375   27.750  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 170604  on 7303013  degrees of freedom
Residual deviance: 162571  on 7303010  degrees of freedom
AIC: 162579

Number of Fisher Scoring iterations: 9

Acknowledgements: We are grateful to data providers in veterinary practice (VetSolutions, Teleos, CVS, and other practitioners). We are grateful to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale Bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing computing resources. We are also grateful for
the help and support provided by SAVSNET team members Bethaney Brant, Susan Bolan and Steven Smyth.
This study was funded mainly by a grant from the Biotechnology and Biological Sciences Research Council,
BB/NO19547/1 and British Small Animal Veterinary Association (BSAVA). The research was partly funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at the University of Liverpool in partnership with Public Health England (PHE) and Liverpool School of Tropical Medicine (LSTM). This work has been partially funded by the “Monitoring outbreak events for disease surveillance in a data science context" (MOOD) project from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 874850 (https://mood-h2020.eu/). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England.

Files

001_gb_map.png

Files (3.2 GB)

Name Size Download all
md5:2c1134cd61116403ff0693594eec27b5
472.9 kB Preview Download
md5:396494ce9e02e25ea356bc31e632a0e6
19.5 MB Download
md5:6f470934e9b7b19fe230c8c8f8ea0011
19.3 MB Download
md5:9fed92df3afd448cf3a5715bf5f445b6
19.5 MB Download
md5:dfc5131508b0dfe6fdcbdb31ad04f44e
19.2 MB Download
md5:0014f61f773b25a7e33f492b8c02a184
19.2 MB Download
md5:52cc8cb69274fc7460fd5bba6103f81d
19.4 MB Download
md5:f22cb7f6c0565cb0e43946a1e59a07d6
19.3 MB Download
md5:28c794179e3c3e227f0a8c0977d88267
19.4 MB Download
md5:28100aec0a299dcda5740dc639b0ebf0
19.4 MB Download
md5:010dc8a4962dc9197f459f66fa854e9e
19.4 MB Download
md5:b99588941638cc734ea235f9b081e964
19.6 MB Download
md5:ddd423b2bf011e5cef04132eb8969dee
19.5 MB Download
md5:fe74fcc58331264ea6df811b09739e3e
62.6 MB Download
md5:44f9e036bac8da96db3522820aaf86a3
2.9 GB Preview Download
md5:a93a940d63926d445329da564104f0ed
123.0 kB Preview Download
md5:0f0e18d4bed552abd9e737376ce20ed2
47.0 kB Preview Download
md5:f882771f29b25d1e576ba7f0e6c91100
46.1 kB Preview Download
md5:76af1a03d1aa9092acf57c95fa866a21
41.8 kB Preview Download
md5:4695b793603972f335ea0cb735371b73
47.3 kB Preview Download
md5:9fe2b3685afbee2fd27e9d3b6bd15309
43.3 kB Preview Download
md5:63bec47e98d26c49e69463d54c56fee0
45.1 kB Preview Download
md5:2f476a8cd7ac4270e7b0dce8f2b5ab7f
45.4 kB Preview Download
md5:7309f2426a954639bc9fae75ede48029
44.5 kB Preview Download
md5:c03c9660aac40401679c3e15c5f2e308
22.3 kB Preview Download
md5:9bb1ff2b9f31c93524a6189a020158c7
20.9 kB Preview Download
md5:1a00bd00db87903fbf9d8469df673bd0
23.5 kB Preview Download
md5:4005eabc3393304db356e9c2e0479d7e
23.6 kB Preview Download
md5:e01a80d4746efde10baaac645847f2b2
23.4 kB Preview Download
md5:9df48af428b65ef1f1fb53c5f085575d
22.9 kB Preview Download
md5:c882313bdb8d69d1bd40388b7e5b938c
22.1 kB Preview Download
md5:12d6378fb61d9f6ba3076db717313d0c
22.3 kB Preview Download
md5:4c9ecfd9ffc413c407620c6963531dfc
21.8 kB Preview Download
md5:fd37f5a83ae2594968ac9f6fd5a21b57
50.7 kB Preview Download
md5:db3f9e06abcfca0b56454d3cf996aa8b
51.1 kB Preview Download
md5:3f68aed18c41222032c08cabe0f4a105
49.8 kB Preview Download
md5:e7817f69c5b5563dc5a660d698ec7c7f
48.1 kB Preview Download
md5:3e3a07ecd0450e8e6963cda0e2811cd7
47.2 kB Preview Download
md5:9d9e7edd1700a153be71bfb00985c2bf
48.1 kB Preview Download
md5:db8a8de452e7fa45dd9080ebc742e864
47.9 kB Preview Download
md5:2f1ef64005223a98e3f690b7045f1fe0
48.6 kB Preview Download
md5:494fba4b7508b1bacf3e28e174089237
22.1 kB Preview Download
md5:920c361841777d85bffa69d0f7194e6a
20.4 kB Preview Download
md5:03422f67e87a183708d24b2153c2edfa
21.7 kB Preview Download
md5:baa1c179cf6c7699a442ae18c78534a9
21.8 kB Preview Download
md5:d126bf344dbff1ef0e8e5373689e19bc
21.6 kB Preview Download
md5:bc5257000c075348432017b8d167856c
22.1 kB Preview Download
md5:2ebd99c415413b927e6279a01e923b2a
21.1 kB Preview Download
md5:0912f694fd44637b12cc240208efed84
21.4 kB Preview Download
md5:711ae768c15f0a7ee16c5f36cab8d2e8
21.4 kB Preview Download
md5:1b4d80cfbd2df7e9ee002aa840b4d4a9
34.4 kB Preview Download
md5:6b8642221b068835476395da6b9200bf
35.9 kB Preview Download
md5:72d495d3dd187ee048d531465c5ba854
34.1 kB Preview Download
md5:19ecd676ac3697886973be5c41a17e49
34.4 kB Preview Download
md5:873d4ea35d124ba9c361bab0c063d264
33.0 kB Preview Download
md5:1c794653aed42f4e0c7bc88e0e1c9581
33.2 kB Preview Download
md5:246b9e4d6e1e66192ba3d7cfaf9c28c8
33.1 kB Preview Download
md5:93636c69852a32187c2dc2975f3df54f
34.3 kB Preview Download
md5:d3c2fe5ba31f489dabd476bc9b65ec29
17.9 kB Preview Download
md5:37bc32b83d8681b36f319c7158e0f179
17.7 kB Preview Download
md5:fc162ca989798192a7fcb25ec10a75d3
17.9 kB Preview Download
md5:03914860ff91beacffcaffab94e8d35e
17.9 kB Preview Download
md5:f8706fdc57650f692d804699899564fa
17.9 kB Preview Download
md5:fc3238efab5bc4e15ce65200b6337ba0
18.0 kB Preview Download
md5:12ba185d8db1aced7fc7b8ff6b46fa97
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:ca154d665aa382555e98748fe509b457
35.0 kB Preview Download
md5:0f8d2fb8e8d0941674eb078b5df95c79
35.0 kB Preview Download
md5:a3f970cab245f068255b04b06ea541bf
34.0 kB Preview Download
md5:53958418d4459c0e23c1b27dead88504
33.3 kB Preview Download
md5:1bb0a2fdef932a696a01d014e58e4d24
32.2 kB Preview Download
md5:bff2f9002878db84a12635debb58aef5
32.9 kB Preview Download
md5:97163b31dd1fd0fb57e408c7c2c88d5b
32.9 kB Preview Download
md5:2a5b3542d9d51c85fe722172321f8392
33.4 kB Preview Download
md5:d3c2fe5ba31f489dabd476bc9b65ec29
17.9 kB Preview Download
md5:37bc32b83d8681b36f319c7158e0f179
17.7 kB Preview Download
md5:fc162ca989798192a7fcb25ec10a75d3
17.9 kB Preview Download
md5:2bdd2f2ecc2d17aa8a4ba896d5f8b310
17.9 kB Preview Download
md5:f8706fdc57650f692d804699899564fa
17.9 kB Preview Download
md5:fc3238efab5bc4e15ce65200b6337ba0
18.0 kB Preview Download
md5:12ba185d8db1aced7fc7b8ff6b46fa97
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:fba5f9c70088f63cbc9a753c3230157e
34.7 kB Preview Download
md5:a8fae0270fef963b7d578d2bac038278
33.6 kB Preview Download
md5:a2547d8febc27370f9a51f7815c54102
34.6 kB Preview Download
md5:84a03ebf930c6d8fcf991a5b28631bde
33.5 kB Preview Download
md5:07faee71be145a0b1d9187a4d33a9ce0
32.5 kB Preview Download
md5:940077285f7e2b73cf32813c56eeab6c
33.4 kB Preview Download
md5:59d2ed1b63485db066f662c52d730f20
33.4 kB Preview Download
md5:efe365e6eba5a22d3d1cebf27ccc90ef
33.9 kB Preview Download
md5:d3c2fe5ba31f489dabd476bc9b65ec29
17.9 kB Preview Download
md5:37bc32b83d8681b36f319c7158e0f179
17.7 kB Preview Download
md5:fc162ca989798192a7fcb25ec10a75d3
17.9 kB Preview Download
md5:03914860ff91beacffcaffab94e8d35e
17.9 kB Preview Download
md5:f8706fdc57650f692d804699899564fa
17.9 kB Preview Download
md5:fc3238efab5bc4e15ce65200b6337ba0
18.0 kB Preview Download
md5:12ba185d8db1aced7fc7b8ff6b46fa97
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:98d1428a96a7d9e9e2ddfa274c14a651
55.3 kB Preview Download
md5:e5871537f8352c55dbd7432418e996a5
55.3 kB Preview Download
md5:aa3dd337957484a888d234a6cf52ec17
54.6 kB Preview Download
md5:b175184715a09951e7d6dee84a217403
53.7 kB Preview Download
md5:eded02a5d938db6aaabf9a2bf084070e
54.3 kB Preview Download
md5:a68ad369ac1ce6047008bbd5398d8eea
53.4 kB Preview Download
md5:3dbeda1a382b148c96bc249242b2107c
53.7 kB Preview Download
md5:3c294694e667075788d20d0ed977eca3
54.8 kB Preview Download
md5:de80d8bc6d03d9923f330fe418779ae0
32.2 kB Preview Download
md5:2d45872bae59bf6c0c359c6704da0c81
29.5 kB Preview Download
md5:7db663691d1b47a1187b8c3c152ca348
33.4 kB Preview Download
md5:9a824169a452706096a42897bc65e228
33.5 kB Preview Download
md5:8393d00455060a19438fc2c8d46cfb1b
32.6 kB Preview Download
md5:3a9dba25186760fc9fa7ecc38de6f2ca
32.3 kB Preview Download
md5:1fce07ea653af0f7212ce76d00ea477b
30.4 kB Preview Download
md5:b70a4052cb97ef641bbf01d3c9b1afb4
31.2 kB Preview Download
md5:ea33ddd2ff68156c05c315de4051a91a
32.0 kB Preview Download
md5:d03873a07d6e26e7947be67a8567183a
60.6 kB Preview Download
md5:0d07c1eb35acb9c07e89016fa9f9295e
60.0 kB Preview Download
md5:d901badd5314bb187c7d4b4773754369
61.1 kB Preview Download
md5:9e4d0899d9334d8bc133e0914de04a70
60.6 kB Preview Download
md5:ffcbe6908ed2e653cf8b421f5089e842
60.6 kB Preview Download
md5:7d238bfe4707bad96a20288651dc7b17
58.8 kB Preview Download
md5:5ee7d7e23929cce776a4df5c859b5331
58.9 kB Preview Download
md5:044f5d53f09fcce3cbc506ffeedf1fda
60.5 kB Preview Download
md5:283c917ff99ceed3be52b0f74301eb66
46.1 kB Preview Download
md5:3c871cc3eda6c79b617cc682011ad5b2
41.8 kB Preview Download
md5:55dacecdd1baaeed0fb3adb3f35dbd08
47.2 kB Preview Download
md5:7f35980b8a95f8067fcc15ee14a929c4
47.3 kB Preview Download
md5:07691dafbb6c2d7d39d934a6603ccca8
45.8 kB Preview Download
md5:4a9dfd684da5cd1efdb6396cfd8a4463
47.6 kB Preview Download
md5:d900bdfa5c6895087b695af9dca443cb
44.7 kB Preview Download
md5:beeb465f991054331b61544b916b8d92
45.1 kB Preview Download
md5:955e617982566e6c1474c540509b4cc9
46.9 kB Preview Download
md5:705603d0716369a43e597a70dbb5c0ce
36.7 kB Preview Download
md5:db2ffb41f5dabbcc7ef2bfbcd2d71f5b
34.5 kB Preview Download
md5:a6910c0df517b4a75663e8970cc9420e
34.2 kB Preview Download
md5:afd73074f5d55eb10189c78544759664
36.5 kB Preview Download
md5:c8bdddddcbc158ed23d69629709191e4
33.7 kB Preview Download
md5:3c927802cd90a6c3bafb175c413b4e3b
36.3 kB Preview Download
md5:37c9cbe44d55f3c7bb7c5e60d095d279
34.7 kB Preview Download
md5:2133cc1d755048ed474dd6f88f80d2cc
35.1 kB Preview Download
md5:77eaaa5b5a2726686c47d8aad5fb8065
18.0 kB Preview Download
md5:3b502a8288b634478d54bcbc686b430e
17.7 kB Preview Download
md5:2a9bb4850fb10eda16a7e5450fe709fd
17.9 kB Preview Download
md5:77d9e679479818cfefbb3fa23da58b4a
18.1 kB Preview Download
md5:e428feff881fe9875d25c6b07fc929a4
18.1 kB Preview Download
md5:8ca340aede3917630241a4521e59800d
18.2 kB Preview Download
md5:60eda8a9de7e94eb8708420c445093bb
18.1 kB Preview Download
md5:648294589ce9f74a27d630c7f85715ff
18.0 kB Preview Download
md5:6fa79976a76eb374860758475e50a591
18.0 kB Preview Download
md5:5434318527eb49dbc26e7ae28ae0d3e9
60.6 kB Preview Download
md5:4adc5135eda728e89bfdb013f20329f8
56.7 kB Preview Download
md5:c10409ce888ad2571d180a335e0ba61d
57.8 kB Preview Download
md5:b84b75f3a7934694d0da38941e6d8559
57.4 kB Preview Download
md5:30274bc7126afe1b6c304b53bedbf216
57.7 kB Preview Download
md5:439aba596cd430d5354fcfc76382d44b
57.5 kB Preview Download
md5:7e277b7f6de182ea7eaeb8602801a85e
58.0 kB Preview Download
md5:e3155e8613821c731c4111f7a178522b
56.5 kB Preview Download
md5:5f569606566daf197de882977e0a97ec
36.4 kB Preview Download
md5:bd9f986c18124ae0fbbcfe8460d5b3a1
33.3 kB Preview Download
md5:1911f936e0af839893a4746f9013b1a3
36.0 kB Preview Download
md5:6e6c285ba46762cb56f5aa697766093c
36.3 kB Preview Download
md5:f91e47e853922e50d5d42ef0b601953d
35.8 kB Preview Download
md5:60cd0ff52beb5fd28807d1b4a6a1d188
37.6 kB Preview Download
md5:61ead346b11be9552f54547a6a392f8d
35.1 kB Preview Download
md5:35f0a6d82453f0279ff74400358a7a9b
36.0 kB Preview Download
md5:1dcce326d7dec3155e3edb5593cdb562
35.6 kB Preview Download
md5:4199738c5a5ac3b24566b242a6e93ee1
38.1 kB Preview Download
md5:4dee57db8778996d28fc8b34e3543a9f
40.1 kB Preview Download
md5:0cb51fc23d958de5f5545cbe0634a6b6
35.3 kB Preview Download
md5:53bef9f7c80b0041400f9f876cde1bd2
34.7 kB Preview Download
md5:88a6c71992594574b7c2c367bd607a25
34.2 kB Preview Download
md5:5779ccbbbe94c45ea0fd627a08482deb
33.5 kB Preview Download
md5:4dbad5e08962226a6943c88356e663bc
34.4 kB Preview Download
md5:9d72fde3056297485dca2a247aea0032
35.0 kB Preview Download
md5:d3c2fe5ba31f489dabd476bc9b65ec29
17.9 kB Preview Download
md5:37bc32b83d8681b36f319c7158e0f179
17.7 kB Preview Download
md5:fc162ca989798192a7fcb25ec10a75d3
17.9 kB Preview Download
md5:03914860ff91beacffcaffab94e8d35e
17.9 kB Preview Download
md5:f8706fdc57650f692d804699899564fa
17.9 kB Preview Download
md5:fc3238efab5bc4e15ce65200b6337ba0
18.0 kB Preview Download
md5:12ba185d8db1aced7fc7b8ff6b46fa97
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:01ea81afbf367072bba0a21ce4a90020
47.5 kB Preview Download
md5:12e17fa959809885436cb1f7caeea97d
45.4 kB Preview Download
md5:808852e1bf1948e817fdc6f8cd947a30
44.4 kB Preview Download
md5:16549546a3fc0138f904f13038285490
45.2 kB Preview Download
md5:b3265d5d60bf2bfa236e11b118bd2b4c
41.9 kB Preview Download
md5:a8fd628139eed144c5c922535cf99343
39.2 kB Preview Download
md5:5d0a32de807719d0ceb39d7d3f5033dc
39.3 kB Preview Download
md5:d17ea577b0bc32ac1d1ee46b1c7891a2
40.8 kB Preview Download
md5:5e575bdfed0036d26c0383d942d456c4
17.9 kB Preview Download
md5:37bc32b83d8681b36f319c7158e0f179
17.7 kB Preview Download
md5:b7aa5cb70f823bb4d63dd2732e10711d
17.9 kB Preview Download
md5:f203caf1273b13ef6c430a2f576bd4ea
17.9 kB Preview Download
md5:08871baec9f1d93954589e83f4817d8d
17.9 kB Preview Download
md5:6787d3134ce8f555b843593cd9713d15
18.0 kB Preview Download
md5:666a638931fded4761f3ea78704e01f1
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:d75d521178346165f526090a8a5e264f
17.9 kB Preview Download
md5:ddd4c299f051a4694f65f53fd958b96a
50.8 kB Preview Download
md5:b0bd347e3fa8c516ab7c1f1ebe0a5530
48.9 kB Preview Download
md5:4f00442eed46e95c862842b597d79449
49.1 kB Preview Download
md5:bdf9c0cc8988589bac31dda010065030
47.9 kB Preview Download
md5:834b8359e49739e348a592b91d174b32
46.2 kB Preview Download
md5:b09ce689a7d0efdfedaf21b90a469ae5
47.0 kB Preview Download
md5:7b0038f98149c79a770643400ad27680
45.4 kB Preview Download
md5:9e8ad17f3f5ed1cb942d59049ed65a3d
46.4 kB Preview Download
md5:fd9767bd7dd75db7d33fb31514f06eb1
18.2 kB Preview Download
md5:556271f974b9ad4381ce76839cb747d0
17.8 kB Preview Download
md5:315df671174a57b77b81630894d19a1c
18.2 kB Preview Download
md5:19e14d471d3c297b5f1de64a1091ebd1
18.2 kB Preview Download
md5:1e01ee6d578f5d965abc6d261c2fe19e
18.2 kB Preview Download
md5:17cc1ca6f7b519b9c949d9d2ea97cba5
18.4 kB Preview Download
md5:a84c66750ecc3e5353a0af836338ac9a
18.1 kB Preview Download
md5:83f14e36e1b5ca8dd056e03d92a54adf
17.9 kB Preview Download
md5:b0d3062c8561f26ddfb36a43d9ff775e
17.9 kB Preview Download
md5:a381ac2a7dc7e6b6171afda5f2a9e784
14.9 kB Download
md5:430d3687fe12f828648d55048c2fab3f
33.3 kB Download
md5:851222efc76d5a526adfebf5728a80b4
5.8 kB Preview Download

Additional details

Funding

European Commission
MOOD - MOnitoring Outbreak events for Disease surveillance in a data science context 874850

References

  • Aegerter, J., Fouracre, D., Smith, G.C.: A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain. PLOS ONE 12(4), 0174709 (2017). doi:10.1371/journal.pone.0174709