Replication package for "The EarlyBIRD Catches the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code Classification"
Description
This repository contains the replication package for the paper "The EarlyBIRD Catches the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code Classification" by Anastasiia Grishina, Max Hort and Leon Moonen, accepted for publication in the ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2023).
The paper is deposited on arXiv, will be available later at the publisher's site (IEEE), and a copy is included in this repository.
The replication package is archived on Zenodo with DOI: 10.5281/zenodo.7608802. The source code is distributed under the MIT license, the data is distributed under the CC BY 4.0 license.
Citation
If you build on this data or code, please cite this work by referring to the paper:
@inproceedings{grishina2023:earlybird,
title = {The EarlyBIRD Catches the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code Classification},
author = {Anastasiia Grishina and Max Hort and Leon Moonen},
booktitle = {ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)},
year = {2023},
publisher = {ACM},
doi = {https://doi.org/10.1145/3611643.3616304},
note = {Pre-print on arXiv at https://arxiv.org/abs/2305.04940}
}
Organization
The replication package is organized as follows:
-
src - the source code
-
requirements - txt files with Python packages and versions for replication
-
data - all raw datasets used for training
- raw
- devign - Devign
- reveal - ReVeal
- breakitfix_it - BIFI dataset
- exception - Exception Type dataset
-
mlruns - results of experiments, the folder is created once the run.py is executed (see part II), empty folder at the time of distribution
-
output - results of experiments will be partially stored here, empty folder at the time of distribution
Usage
Python version: 3.7.9
(later versions should also work well); CUDA version: 11.6
; Git LFS.
Commands below work well on Mac or Linux and should be adapted if you have a Windows machine.
I. Set up data, environment and code
1. Path to project directory
Update path/to/project to point at EarlyBIRD
export EarlyBIRD=~/path/to/EarlyBIRD
2. Download codebert checkpoint
Please, install Git LFS: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
Run the following from within $EarlyBIRD/
:
cd $EarlyBIRD
mkdir -p checkpoints/reused/model
cd checkpoints/reused/model
git lfs install
git clone https://huggingface.co/microsoft/codebert-base
cd codebert-base/
git lfs pull
cd ../../..
3. Set up a virtual environment
cd $EarlyBIRD
python -m venv venv
source venv/bin/activate
3.1 No CUDA
python -m pip install -r requirements/requirements_no_cuda.txt
3.2 With CUDA (to run on GPU)
python -m pip install -r requirements/requirements_with_cuda.txt
python -m pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
4 Preprocess data
After preprocessing, all datasets are stored in jsonlines (if in python) format. Naming convention: split is one of 'train', 'valid', 'test'
in data/preprocessed-final/<dataset_name>/<split>.jsonl
, with
{'src': "def function_1() ...", 'label': "Label1"}
{'src': "def function_2() ...", 'label': "Label2"}
...
4.1 Devign
Raw data is downloaded from https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/view. Test, train, valid txt files are downloaded from https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection/dataset. All files are saved in data/raw/devign
.
To preprocess raw data:
cd $EarlyBIRD
python -m src.preprocess \
--dataset_name devign \
--shrink_code \
--config_path src/config.yaml
4.2 ReVeal
Raw data is downloaded from https://github.com/VulDetProject/ReVeal under "Our Collected vulnerabilities from Chrome and Debian issue trackers (Often referred as Chrome+Debian or Verum dataset in this project)" and saved in data/raw/reveal
.
To preprocess raw data:
cd $EarlyBIRD
python -m src.preprocess \
--dataset_name reveal \
--shrink_code \
--config_path src/config.yaml
4.3 Break-it-fix-it
Raw data is downloaded as data_minimal.zip
from https://github.com/michiyasunaga/BIFI under p. 1, unzipped, and the folder orig_bad_code
is saved in data/raw/break_it_fix_it
.
To preprocess raw data:
cd $EarlyBIRD
python -m src.preprocess \
--dataset_name break_it_fix_it \
--shrink_code \
--ratio_train 0.9 \
--config_path src/config.yaml
Note: The original paper contains only train and test split. Use --ratio_train
to specify what part of the original train (orig-train) split will be used in train and the rest of orig-train will be used for validation during training.
4.4 Exception Type
Raw data is downloaded from https://github.com/google-research/google-research/tree/master/cubert under "2. Exception classification" (it points to this storage) and saved in data/raw/exception_type
.
To preprocess raw data:
cd $EarlyBIRD
python -m src.preprocess \
--dataset_name exception \
--shrink_code \
--config_path src/config.yaml
II. Run code
Activate virtual environment (if not done so yet):
cd $EarlyBIRD
source venv/bin/activate
Example run
Run experiments with Devign using pruned models (cutoff_layers_one_layer_cls
) to 3 layers (--hidden_layer_to_use 3
), for example:
cd $EarlyBIRD
python -m src.run --help # for help with command line args
python -m src.run \
--config_path src/config.yaml \
-warmup 0 \
--device cuda \
--dataset_name devign \
--benchmark_name acc \
--train \
--test \
--epochs 10 \
-clf one_linear_layer \
--combination_type cutoff_layers_one_layer_cls \
--hidden_layer_to_use 3 \
--experiment_no 12 \
--seed 42
To run experiments on a small subset of data, use --debug
argument. For example:
python -m src.run \
--debug \
--config_path src/config.yaml \
-warmup 0 \
--device cuda \
--dataset_name devign \
--benchmark_name acc \
--train \
--test \
--epochs 10 \
-clf one_linear_layer \
--combination_type cutoff_layers_one_layer_cls \
--hidden_layer_to_use 3 \
--experiment_no 12 \
--seed 42
Explore output
Your EarlyBIRD/
should contain mlruns/
. If you started the run.py
from another location, you will find mlruns/
one level below that location.
cd $EarlyBIRD
mlflow ui
Alternatively, find tables in EarlyBIRD/output/tables/
with best epoch logs and logs of all epochs.
Acknowledgement:
Notes
Files
EarlyBIRD.zip
Files
(45.8 MB)
Name | Size | Download all |
---|---|---|
md5:ea27d527fd5e5452f534ac90fc03662e
|
45.8 MB | Preview Download |
Additional details
Related works
- Is supplement to
- Preprint: 10.48550/arXiv.2305.04940 (DOI)