Planned intervention: On Wednesday June 26th 05:30 UTC Zenodo will be unavailable for 10-20 minutes to perform a storage cluster upgrade.
Published January 31, 2023 | Version 1
Journal article Open

Influence of particle size on the batch flotation of Concentrator Tailings with a view to their industrial recovery

  • 1. Department of Metallurgy, Polytechnic Faculty, University of Likasi, B.P.1946, Likasi, Haut-Katanga, D.R. Congo
  • 2. Department of Industrial Chemistry, Polytechnic Faculty, University of Lubumbashi, B.P.1825, Lubumbashi, Haut-Katanga, D.R. Congo
  • 3. Department of Chemistry, Polytechnic Faculty, University of Likasi, B.P.1946, Likasi, Haut-Katanga, D.R. Congo

Description

Retreatment of wastes is of both economic and environmental interest. The valorization of the wastes of the Southern Katanga Mining Company (CMSK) has a definite advantage on the operating cost, the cost of extraction and the cost of grinding which are significantly reduced.

         To assess the influence of regrinding in the reprocessing by flotation of CMSK plant wastes, flotation tests were carried out on fractions. The fraction smaller than 75 µm constitutes the original sample (flotation 1), the original sample ground for 10 minutes (flotation 2), the fraction above 75 µm of the original sample (flotation 3) and the fraction below 45 µm of the original sample (flotation 4).

         From the obtained results after flotation in similar conditions, it appeared that the particle size has a real influence on the metallurgical performance; Flotation gives the best recovery yields (70.35% for Cu and 77.88$ for Co), followed by flotation 4 (58.98% for Cu and 64.78% for Co), then flotation 3 (57.94% for Cu and 64.14% for Co), and finally flotation 2 (45.51% for Cu and 55.84 % for Co).

         It should therefore be recommended to grind the fraction greater than 75 µm in the hope of improving the recovery yield from the flotation of this fraction. For the fraction smaller than 45 µm, given the risk of generating fine particles (˂ 10 µm) when regrinding the wastes, this fraction should be processed without regrinding.

Files

CHME-V78-I1-C2-OCT-2022-PP-07-15.pdf

Files (1.3 MB)

Name Size Download all
md5:f872cb869794ea0116e1aa963051d70a
1.3 MB Preview Download

Additional details

References

  • BERNASCONI, P., POIRIER, J.E., BOUZAT, G., BLAZY, P., BESSIERE, J., DURAND, R., [1988]. Zirconium ion flotation with long-chain al-kylsulfates from nitric acid and uranyl nitrate solutions. International Journal of Mineral Processing 23, 293 – 310.
  • BOUCHARD S., [2001]. Ore Processing : Flotation-Physical Methods, Edition le griffon d'argile.
  • CARLESON, T.E., [1989]. Adsorption bubble separation process. In: Scamehorn, J.F., Harwell, J.H. (Eds), Surfactant-Based Separation Processes. Surfactant Science Series, vol. 33. Marcel Dekker, New York, pp. 233-258.
  • CORNELL, W.L and HOLTGREFE, D.C, [1989]. Continous Flotation Testing to Recover a Bulk Sulfide Concentrate from Missouri Lead Ore Tailings, U.S.Bur Mines, RI 9296.
  • EK C., MASSON A., [1973]. Cours de minéralurgie et préparation des minerais, édition Derroux, Liège. Barry A. Wills, Tim Napier-Munn, 2006.
  • GAYDARDZHIEV S., [1992]. Mineral Processing I, Support de course ULG, 2015.
  • JDID, E.A., BLAZY, P., [1990]. Selective separation of zirconium from uranium in carbonate solutions by ion flotation. Separation Science and Technology 25 (6), 701-710.
  • KATWIKA C., KIME MB., KALENGA P.N.M., MBUYA B.I., MWILEN [2018]. Application of Knelson concentrator for beneficiation of copper-cobalt ore tailings, Mineral Processing and Extractive Metallurgy Review, DOI: 10. 1080/08827508.2018.1481057, https:// doi.org/10.1080/08827508.2018.1481057.
  • KATWIKA C., [2012]. Contribution à l'amélioration des performances du Nouveau Concentrateur de Kipushi en République Démocratique du Congo - Application de la concentration gravimétrique centrifuge, thèse de doctorat mixte UMONS-UNILU.
  • KAZUTOSHI, H., WILLIAM, T and ATSUSHI, S., [2012]. Investigation of Flotation Parameters for Copper Recovery from Enargite and Chalcopyrite Mixed Ore Materials Transactions, The Japan Institute of Metals, Vol. 53, N°4, pp. 707 to 715.
  • KE, J., [1992]. Ion flotation of scandium. Rare Metals 11 (3), 199-201.
  • KIKOTE L., [2016]. Impact du rebroyage dans le retraitement par flottation des rejets usines du nouveau concentrateur de kipushi, TFE, Université de Lubumbashi.
  • KITOBO W., [2009]. Dépollution et valorisation des rejets miniers sulfurés du Katanga cas des taillings de l'ancien concentrateur de Kipushi. Thèse de doctorat, Université de Liège, Belgique, Faculté des sciences appliquées.
  • LIU, R.Z., QIN,W.Q., JIAO, F., WANG, X.J., BIN, P., YANG, Y.J and LAI, C.H., [2009]. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate. Trans. Nonferrous Met. Soc. China, Vol. 26, pp. 265-271.
  • MANTIS, K.A., MAVROS, P., [1991]. Removal of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods 20 (1), 1-48.
  • NICOL, S.K., NAPPER, D.H., [1992]. Ion flotation-potential applications to mineral processing. Minerals ENGINEERING 5 (10 – 12), 1259 – 1275.
  • PELLETIER D., [1999]. Problématique de la flottation des fines particules. Maitrise, Université de Laval, Canada.
  • PINFOLD, T.A., [1972]. Ion flotation. In: Lemlich, R. (Ed), Adsorptive Bubble Separation Techniques. Academic Press, New York.
  • PROULX M., [2000]. Amélioration du rendement des particules grossières par la stratégie d'addition des réactifs dans un banc de flottation, Maitrise, Université Laval, Québec, Canada.
  • SOSABLANCO A.C., [1999]. Optimisation économique d'une unité industrielle de broyage et flottation par réglage du circuit de broyage. Thèse, Université Laval, Québec, Canada.
  • SEBBA, F., [1959]. Concentration by ion flottation. Nature 184, 1062-1063.
  • SEBBA, F., [1962]. Ion Flottation. Elsevier, New York.
  • TESSELE, F., MISRA, M., RUBBIO, J., [1998]. Removal of Hg, As and Se from gold cyanide leach solutions by dissolved air flotation. Minerals Engineering 11 (6), 535-568.
  • TWIDLE T.R., ENGELBRECHT P.C. [1984]. Developments in the flotation of copper at black mountain. Journal of the South African. Institute of mining and metallurgy. Vol. 84. N° 6, pp. 164-178.
  • ZOUBOULIS, A.I., MATIS, K.A., [1995]. Metal ion flotation in hydrometallurgy; the case of germanium recovery. In: Matis, K.A. (Ed), Flotation Science and Engineering. Marcel Dekker, New York, pp. 517-550.
  • ZHANG, C., SONG, N., ZENG, G.M., JIANG, M., ZHANG, J.C., HU, X.L and ZHEN, J.M., [1995]. Bioaccumulation of zinc, lead, copper, and cadmium from contaminated sediments by native plant species and Acrida cinerea in South China. Environ. Monit. Assess., Vol. 186, pp. 1735-1745.