Solar neutrino fluxes show the signature of planet formation processes
- 1. Kurume University
- 2. Observatoire de la Côte d'Azur
- 3. Université de Genève
Contributors
Description
Solar evolutionary models are thus far unable to reproduce spectroscopic, helioseismic and neutrino constraints consistently, resulting in the so-called solar modeling problem. In parallel, planet formation models predict that the evolving composition of the protosolar disk, and thus, of the accreted gas by the proto-Sun must have been variable. In this talk, we show that solar evolutionary models including a realistic planet formation scenario lead to an increased core metallicity of up to 5%, implying that accurate neutrino flux measurements are sensitive to the initial stages of the formation of the Solar System. We demonstrate that in addition to macroscopic transport and increased opacities at the base of the convective envelope, the formation history of the Solar System constitutes a key element to resolve the current crisis of solar models.
Files
Kunitomo-CS21.pdf
Files
(9.0 MB)
Name | Size | Download all |
---|---|---|
md5:8366c8554c564e5674e4bf2f8354e524
|
1.8 MB | Preview Download |
md5:af9f9714c3b22ea86c88affaac86257d
|
7.3 MB | Preview Download |
Additional details
References
- Adachi, I., Hayashi, C., & Nakazawa, K. 1976, Progress of Theoretical Physics, 56, 1756.
- Agostini, M., Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., et al. 2018, Nature, 562, 505.
- Appel, S., Bagdasarian, Z., Basilico, D., Bellini, G., Benziger, J., et al. 2022, Phys. Rev. Lett., 129, 252701.
- Asplund, M., Amarsi, A. M., & Grevesse, N. 2021, A&A, 653, A141.
- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481.
- Ayukov, S. V. & Baturin, V. A. 2017, Astronomy Reports, 61, 901.
- Bahcall, J. N., Serenelli, A. M., & Basu, S. 2006, ApJS, 165, 400.
- Bahcall, J. N. & Ulmer, A. 1996, Phys. Rev. D., 53, 4202.
- Bailey, J. E., Nagayama, T., Loisel, G. P., Rochau, G. A., Blancard, C., et al. 2015, Nature, 517, 56.
- Basu, S., Chaplin, W. J., Elsworth, Y., New, R., & Serenelli, A. M. 2009, ApJ, 699, 1403.
- Borexino Collaboration, M., Agostini, Altenmüller, K., Appel, S., Atroshchenko, V., Bagdasarian, Z., et al. 2020, Nature, 587, 577.
- Buldgen, G., Eggenberger, P., Noels, A., Scuflaire, R., Amarsi, A. M., et al. 2023, A&A, 669, L9.
- Buldgen, G., Salmon, S. J. A. J., Noels, A., Scuflaire, R., Montalban, J., et al. 2019, A&A, 621, A33.
- Christensen-Dalsgaard, J., Dappen,W., Ajukov, S. V., Anderson, E. R., Antia, H. M., et al. 1996, Science, 272, 1286.
- Christensen-Dalsgaard, J., di Mauro, M. P., Houdek, G., & Pijpers, F. 2009, A&A, 494, 205.
- Eggenberger, P., Buldgen, G., Salmon, S. J. A. J., Noels, A., Grevesse, N., et al. 2022, Nature Astronomy, 6, 788.
- Gough, D. O. 2019, MNRAS, 485, L114.
- Grevesse, N. & Sauval, A. J. 1998, SSRv, 85, 161.
- Guillot, T., Fletcher, L. N., Helled, R., Ikoma, M., Line, M. R., et al. 2022, arXiv e-prints, arXiv:2205.04100.
- Guillot, T., Ida, S., & Ormel, C. W. 2014, A&A, 572, A72.
- Haxton, W. C. & Serenelli, A. M. 2008, ApJ, 687, 678.
- Hillenbrand, L. A. 2009, In IAU Symposium, edited by E. E. Mamajek, D. R. Soderblom, & R. F. G. Wyse, IAU Symposium, vol. 258, pp. 81–94.
- Kobayashi, H. & Tanaka, H. 2021, ApJ, 922, 16.
- Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. 2017, Proceedings of the National Academy of Science, 114, 6712.
- Kunitomo, M. & Guillot, T. 2021, A&A, 655, A51.
- Kunitomo, M., Guillot, T., & Buldgen, G. 2022, A&A, 667, L2.
- Kunitomo, M., Guillot, T., Ida, S., & Takeuchi, T. 2018, A&A, 618, A132.
- Kunitomo, M., Guillot, T., Takeuchi, T., & Ida, S. 2017, A&A, 599, A49.
- Magg, E., Bergemann, M., Serenelli, A., Bautista, M., Plez, B., et al. 2022, A&A, 661, A140.
- Meléndez, J., Asplund, M., Gustafsson, B., & Yong, D. 2009, ApJL, 704, L66.
- Montalban, J., Miglio, A., Theado, S., Noels, A., & Grevesse, N. 2006, Communications in Asteroseismology, 147, 80.
- Murphy, S. J. & Paunzen, E. 2017, MNRAS, 466, 546.
- Nelder, J. A. & Mead, R. 1965, The computer journal, 7, 308.
- Orebi Gann, G. D., Zuber, K., Bemmerer, D., & Serenelli, A. 2021, Annual Review of Nuclear and Particle Science, 71, 491.
- Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., et al. 2011, ApJS, 192, 3.
- Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F. et al. 2013, ApJS, 208, 4.
- Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., et al. 2015, ApJS, 220, 15.
- Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., et al. 2018, ApJS, 234, 34.
- Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., et al. 2019, ApJS, 243, 10.
- Serenelli, A. M., Basu, S., Ferguson, J.W., & Asplund, M. 2009, ApJL, 705, L123.
- Serenelli, A. M., Haxton, W. C., & Peña-Garay, C. 2011, ApJ, 743, 24.
- Spina, L., Sharma, P., Meléndez, J., Bedell, M., Casey, A. R., et al. 2021, Nature Astronomy, 5, 1163.
- Villante, F. L. 2010, ApJ, 724, 98.
- Vinyoles, N., Serenelli, A. M., Villante, F. L., Basu, S.,
- Bergström, J., et al. 2017, ApJ, 835, 202.
- Zhang, Q.-S., Li, Y., & Christensen-Dalsgaard, J. 2019, ApJ, 881, 103.