Published January 14, 2022 | Version v1
Journal article Open

Microscale drivers of summer CO2 fluxes in the Svalbard High Arctic tundra

  • 1. Institute of Geoscience and Earth Resources, National Council of Research of Italy

Description

High-Arctic ecosystems are strongly affected by climate change, and it is still unclear whether they will become a carbon source or sink in the next few decades. In turn, such knowledge gaps on the drivers and the processes controlling CO2 fluxes and storage make future projections of the Arctic carbon budget a challenging goal. During summer 2019, we extensively measured CO2 fluxes at the soil–vegetation–atmosphere interface, together with basic meteoclimatic variables and ecological characteristics in the Bayelva river basin near Ny Ålesund, Spitzbergen, Svalbard (NO). By means
of multi-regression models, we identified the main small-scale drivers of CO2 emission (Ecosystem Respiration, ER), and uptake (Gross Primary Production, GPP) in this tundra biome, showing that (i) at point scale, the temporal variability of fluxes is controlled by the classical drivers, i.e. air temperature and solar irradiance respectively for ER and GPP, (ii) at site scale, the heterogeneity of fractional vegetation cover, soil moisture and vegetation type acted as additional source of variability for both CO2 emissions and uptake. The assessment of the relative importance of such drivers in the multi- regression model contributes to a better understanding of the terrestrial carbon dioxide exchanges and of Critical Zone processes in the Arctic tundra.

Files

Magnani_et_al-2022-Scientific_Reports.pdf

Files (3.5 MB)

Name Size Download all
md5:ee0c6041d6308a4596bb2f40f2976e1b
3.5 MB Preview Download

Additional details

Related works