Dyall dz, tz, and qz basis sets for relativistic electronic structure calculations
Description
This archive contains the Dyall basis sets for relativistic atomic and molecular electronic structure calculations. They are given in the format required by the DIRAC program (see diracprogram.org), which is essentially a list of the exponents for each angular momentum for each element. The basis sets are of double-, triple-, and quadruple-zeta quality. For each quality, there are three basis set types: valence (vNz), core-valence (cvNz) and all-electron (aeNz). These basis sets include correlating functions for the relevant shells (valence, valence+outer core, all shells). In addition, for each of these basis sets there is another set that contains diffuse functions for the s, p, and d elements, optimized for the anion or extrapolated from neigboring elements where the anion is unbound or weakly bound. These sets are labeled avNz, acvNz, and aaeNz. References for the basis sets are included in the basis set files.
The archive files containing descriptions and recommendations for each basis set, as well as SCF coefficients and lists of exponents, are available here.
Files
      
        dyall.zip
        
      
    
    
      
        Files
         (911.8 kB)
        
      
    
    | Name | Size | Download all | 
|---|---|---|
| md5:882f4489e66517903108abf9adeb07f1 | 911.8 kB | Preview Download | 
Additional details
            
              References
            
          
        - K. G. Dyall, Theor. Chem. Acc. 99, 366 (1998). Relativistic and nonrelativistic finite nucleus optimized double zeta basis sets for the 4p, 5p and 6p elements. DOI: 10.1007/s002149800m22
- K. G. Dyall, Theor. Chem. Acc. 108, 335 (2002). Relativistic and nonrelativistic energy-optimized polarized triple-zeta basis sets for the 4p, 5p and 6p elements. DOI: 0.1007/s00214-002-0388-0, erratum 10.1007/s00214-003-0433-7
- K. G. Dyall, Theor. Chem. Acc. 112, 403 (2004). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf - Hg. DOI: 10.1007/s00214-004-0607-y
- K. G. Dyall, Theor. Chem. Acc. 115, 441 (2006). Relativistic quadruple-zeta basis sets and revised triple-zeta and double-zeta basis sets for the 4p, 5p and 6p elements. DOI: 10.1007/s00214-006-0126-0
- K. G. Dyall, Theor. Chem. Acc. 117, 483 (2007). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y - Cd. DOI: 10.1007/s00214-006-0174-5
- K. G. Dyall, Theor. Chem. Acc. 117, 491 (2007). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinide elements Ac - Lr. DOI: 10.1007/s00214-006-0175-4
- K. G. Dyall, J. Phys. Chem. A. 113, 12638 (2009). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. DOI: 10.1021/jp905057q
- K. G. Dyall and A. S. P. Gomes, Theor. Chem. Acc. 125, 97 (2010). Revised relativistic basis sets for the 5d elements Hf - Hg DOI: 10.1007/s00214-009-0717-7
- A. S. P. Gomes, K. G. Dyall, and L. Visscher, Theor. Chem. Acc. 127, 369 (2010). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanide elements La - Lu. DOI: 10.1007/s00214-009-0725-7
- K. G. Dyall, Theor. Chem. Acc. 129, 603 (2011). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 6d elements Rf - Cn. DOI: 10.1007/s00214-011-0906-z
- K. G. Dyall, Theor. Chem. Acc. 131, 1172 (2012). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications. DOI: 10.1007/s00214-012-1172-4
- K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012). Core correlating basis functions for elements 31 - 118. DOI: 10.1007/s00214-012-1217-8
- K. G. Dyall, Theor. Chem. Acc. 135, 128 (2016). Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H - Ar. DOI: 10.1007/s00214-016-1884-y
- K. G. Dyall, P. Tecmer, and A. Sunaga, J. Chem. Theor. Comput. 19, 198 (2023). Diffuse basis functions for relativistic s and d block Gaussian basis sets. DOI: 10.1021/acs.jctc.2c01050