Published June 7, 2022 | Version 1
Journal article Open

Flow cell for operandoX-ray photon-in-photon-out studies on photo-electrochemical thin film devices

  • 1. Institutes of Nanostructure and Solid State Physics, Center for Hybrid Nanostructures, University of Hamburg, Hamburg, Luruper Chaussee 149, 22607, Germany
  • 2. Department of Materials, Laboratory for Multifunctional Materials, ETH Zürich, Zurich, Vladimir-Prelog-Weg 5, 8093, Switzerland
  • 3. European Synchrotron Radiation Facility, Grenoble, 71 avenue des Martyrs, CS 40220, 38043, France

Description

Background: Photo-electro-chemical (PEC) water splitting represents a promising technology towards an artificial photosynthetic device but many fundamental electronic processes, which govern long-term stability and energetics, are not yet fully understood. X-ray absorption spectroscopy (XAS), and particularly its high energy resolution fluorescence-detected (HERFD) mode, emerges as a powerful tool to study photo-excited charge carrier behavior under operating conditions. The established thin film device architecture of PEC cells provides a well-defined measurement geometry, but it puts many constraints on conducting operando XAS experiments. It remains a challenge to establish a standardized thin film exchange procedure and concurrently record high-quality photoelectrochemical and X‑ray absorption spectroscopy data that is unperturbed by bubble formation. Here we address and overcome these instrumental limitations for photoelectrochemical operando HERFD-XAS.

Methods: We constructed a novel operando photo-electro-chemical cell by computer numerical control milling, guided by the materials' X‑ray and visible light absorption properties to optimize signal detection. To test the cell's functionality, semiconducting thin film photoelectrodes have been fabricated via solution deposition and their photoelectrochemical responses under simulated solar light were studied using a commercial potentiostat in a three-electrode configuration during HERFD-XAS experiments at a synchrotron.

Results: We demonstrate the cell's capabilities to measure and control potentiostatically and in open‑circuit, to detect X‑ray signals unperturbed by bubbles and to fluently exchange different thin film samples by collecting high-resolution Fe K-edge spectra of hematite ( α -Fe 2O 3) and ferrite thin film ( MFe 2O 4, M= Zn, Ni) photoelectrodes during water oxidation.

Conclusions: Our cell establishes a measurement routine that will provide experimental access of photo-electro-chemical operando HERFD-XAS experiments to a broader scientific community, particularly due to the ease of sample exchange. We believe to enable a broad range of experiments which acquired fundamental insights will spur further photoelectrochemical research and commercialization of water splitting technologies

Files

openreseurope-2-15578.pdf

Files (2.2 MB)

Name Size Download all
md5:f30644cb0364a65bd5689f6ebfa7b3c0
2.2 MB Preview Download

Additional details

References

  • Chu S, Cui Y, Liu N (2016). The path towards sustainable energy. Nat Mater. doi:10.1038/nmat4834
  • Sivula K, van de Krol R (2016). Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Chem. doi:10.1038/natrevmats.2015.10
  • Ardo S, Fernandez Rivas D, Modestino MA (2018). Pathways to electrochemical solar-hydrogen technologies. Energy Environ Sci. doi:10.1039/C7EE03639F
  • Detz RJ, Reek JNH, van der Zwaan BCC (2018). The future of solar fuels: when could they become competitive?. Energy Environ Sci. doi:10.1039/C8EE00111A
  • Shaner MR, Atwater HA, Lewis NS (2016). A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ Sci. doi:10.1039/C5EE02573G
  • Kim TW, Ping Y, Galli GA (2015). Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat Commun. doi:10.1038/ncomms9769
  • Kim JH, Kim JH, Jang JW (2015). Awakening Solar Water-Splitting Activity of ZnFe O Nanorods by Hybrid Microwave Annealing. Adv Energy Mater. doi:10.1002/aenm.201401933
  • Hufnagel AG, Peters K, Müller A (2016). Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Water-Splitting. Adv Funct Mater. doi:10.1002/adfm.201600461
  • (2018). The fine line between performance improvement and device practicality. Nat Commun. doi:10.1038/s41467-018-07733-6
  • Iqbal A, Bevan KH (2017). Simultaneously Solving the Photovoltage and Photocurrent at Semiconductor–Liquid Interfaces. J Phys Chem C. doi:10.1021/acs.jpcc.7b08517
  • Toma FM, Cooper JK, Kunzelmann V (2016). Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat Commun. doi:10.1038/ncomms12012
  • Zhang S, Rohloff M, Kasian O (2019). Dissolution of BiVO Photoanodes Revealed by Time-Resolved Measurements under Photoelectrochemical Conditions. J Phys Chem C. doi:10.1021/acs.jpcc.9b07220
  • Weckhuysen BM (2003). Operando spectroscopy: fundamental and technical aspects of spectroscopy of catalysts under working conditions. Phys Chem Chem Phys. doi:10.1039/B309654H
  • Singh J, Lamberti C, van Bokhoven JA (2010). Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev. doi:10.1039/c0cs00054j
  • Hirsch O, Kvashnina KO, Luo L (2015). High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO . Proc Natl Acad Sci U S A. doi:10.1073/pnas.1516192113
  • Bergmann A, Martinez-Moreno E, Teschner D (2015). Reversible amorphization and the catalytically active state of crystalline Co O during oxygen evolution. Nat Commun. doi:10.1038/ncomms9625
  • Amidani L, Naldoni A, Malvestuto M (2015). Probing Long-Lived Plasmonic-Generated Charges in TiO /Au by High-Resolution X-ray Absorption Spectroscopy. Angew Chem Int Ed. doi:10.1002/anie.201412030
  • Friebel D, Louie MW, Bajdich M (2015). Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J Am Chem Soc. doi:10.1021/ja511559d
  • Zhang Y, Pelliccione CJ, Brady AB (2017). Probing the Li Insertion Mechanism of ZnFe O in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study. Chem Mater. doi:10.1021/acs.chemmater.7b00467
  • Pfeffer MG, Schafer B, Smolentsev G (2015). Palladium versus platinum: the metal in the catalytic center of a molecular photocatalyst determines the mechanism of the hydrogen production with visible light. Angew Chem Int Ed. doi:10.1002/anie.201409438
  • Yoshida M, Yomogida T, Mineo T (2013). observation of carrier transfer in the Mn-oxide/Nb:SrTiO photoelectrode by X-ray absorption spectroscopy. Chem Commun (Camb). doi:10.1039/c3cc43584a
  • Minguzzi A, Naldoni A, Lugaresi O (2017). Observation of charge transfer cascades in α-Fe O /IrO photoanodes by operando X-ray absorption spectroscopy. Phys Chem Chem Phys. doi:10.1039/c6cp08053g
  • Braun A, Sivula K, Bora DK (2012). Direct Observation of Two Electron Holes in a Hematite Photoanode during Photoelectrochemical Water Splitting. J Phys Chem C. doi:10.1021/jp304254k
  • Santomauro FG, Lübcke A, Rittmann J (2015). Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO . Sci Rep. doi:10.1038/srep14834
  • Achilli E, Minguzzi A, Visibile A (2016). 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation. J Synchrotron Rad. doi:10.1107/S1600577515024480
  • Kubli M, Luo L, Bilecka I (2010). Microwave-assisted nonaqueous sol-gel deposition of different spinel ferrites and barium titanate perovskite thin films. Chimia (Aarau). doi:10.2533/chimia.2010.170
  • Zeng G, Shi N, Hess M (2015). A General Method of Fabricating Flexible Spinel-Type Oxide/Reduced Graphene Oxide Nanocomposite Aerogels as Advanced Anodes for Lithium-Ion Batteries. ACS Nano. doi:10.1021/acsnano.5b00576
  • Grote C, Cheema TA, Garnweitner G (2012). Comparative Study of Ligand Binding during the Postsynthetic Stabilization of Metal Oxide Nanoparticles. Langmuir. doi:10.1021/la301822r
  • Erdem D, Shi Y, Heiligtag FJ (2015). Liquid-phase deposition of ferroelectrically switchable nanoparticle-based BaTiO films of macroscopically controlled thickness. J Mater Chem C. doi:10.1039/C5TC02214B
  • Jäker P, Koziej D, Detlefs B (2022). Dataset for the development of a "Flow cell for operando X-ray photon-in-photon-out studies on photo-electrochemical thin film devices" [Data set]. Zenodo.
  • (null).
  • Schneider CA, Rasband WS, Eliceiri KW (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. doi:10.1038/nmeth.2089
  • Momma K, Izumi F (2011). for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. doi:10.1107/S0021889811038970
  • Maslen EN, Streltsov VA, Streltsova NR (1994). Synchrotron X-ray study of the electron density in α-Fe O . Acta Crystallographica Section B. doi:10.1107/S0108768194002284
  • Waerenborgh JC, Figueiredo MO, Cabral JMP (1994). Temperature and Composition Dependence of the Cation Distribution in Synthetic ZnFe Al O (0 ≤ y ≤ 1) Spinels. Journal of Solid State Chemistry. doi:10.1006/jssc.1994.1231
  • Henke BL, Gullikson EM, Davis JC (1993). X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. At Data Nucl Data Tables. doi:10.1006/adnd.1993.1013
  • Shavorskiy A, Ye X, Karslıoğlu O (2017). Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting. J Phys Chem Lett. doi:10.1021/acs.jpclett.7b02548
  • Lee DK, Lee D, Lumley MA (2019). Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem Soc Rev. doi:10.1039/c8cs00761f
  • Zhu X, Guijarro N, Liu Y (2018). Spinel Structural Disorder Influences Solar-Water-Splitting Performance of ZnFe O Nanorod Photoanodes. Adv Mater. doi:10.1002/adma.201801612
  • Dillert R, Taffa DH, Wark M (2015). Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe O ) under visible light irradiation. APL Mater. doi:10.1063/1.4931763
  • Reinhard S (2016). Nanostructured Tungsten Oxide Photoanodes for Photoelectrochemical Hydrogen Production. doi:10.3929/ethz-a-010610330
  • Malviya KD, Dotan H, Yoon KR (2015). Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe O ) photoanodes. J Mater Res. doi:10.1557/jmr.2015.300
  • Maabong K, Hu Y, Braun A (2016). Influence of anodization time on the surface modifications on α-Fe2O3 photoanode upon anodization. J Mater Res. doi:10.1557/jmr.2016.53
  • Braun A, Chen Q, Flak D (2012). Iron Resonant Photoemission Spectroscopy on Anodized Hematite Points to Electron Hole Doping during Anodization. ChemPhysChem. doi:10.1002/cphc.201200074
  • Bard AJ (2001). Electrochemical methods : fundamentals and applications.
  • Le Formal F, Sivula K, Grätzel M (2012). The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments. J Phys Chem C. doi:10.1021/jp308591k
  • Kenyon CN, Ryba GN, Lewis NS (1993). Analysis of time-resolved photocurrent transients at semiconductor/liquid interfaces. J Phys Chem. doi:10.1021/j100151a048
  • Smith SW (1997). The Scientist and Engineer's Guide to Digital Signal Processing.
  • Schroeder DJ (2000). Astronomical Optics. doi:10.1016/B978-0-12-629810-9.X5000-2
  • Réfrégier P (2004). Noise Theory and Application to Physics. doi:10.1007/978-0-387-22526-5
  • Knoll GF (2000). Radiation Detection and Measurement.
  • Vaseghi SV (2008). Advanced digital signal processing and noise reduction. doi:10.1002/9780470740156
  • Chergui M, Collet E (2017). Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev. doi:10.1021/acs.chemrev.6b00831
  • Schön D, Xiao J, Golnak R (2017). Introducing Ionic-Current Detection for X-ray Absorption Spectroscopy in Liquid Cells. J Phys Chem Lett. doi:10.1021/acs.jpclett.7b00646
  • Schön D, Golnak R, Tesch MF (2017). Bulk-Sensitive Detection of the Total Ion Yield for X-ray Absorption Spectroscopy in Liquid Cells. J Phys Chem Lett. doi:10.1021/acs.jpclett.7b02381
  • Hu TD, Xie YN, Qiao S (1994). Photoconduction extended x-ray-absorption fine structure of GaAs. Phys Rev B. doi:10.1103/physrevb.50.2216
  • Vyvenko OF, Buonassisi T, Istratov AA (2002). X-ray beam induced current—a synchrotron radiation based technique for the analysis of recombination properties and chemical nature of metal clusters in silicon. J Appl Phys. doi:10.1063/1.1450026
  • Buonassisi T, Istratov AA, Pickett MD (2005). Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current. Appl Phys Lett. doi:10.1063/1.1997274
  • Johannes A, Salomon D, Martinez-Criado G (2017). In operando x-ray imaging of nanoscale devices: Composition, valence, and internal electrical fields. Sci Adv. doi:10.1126/sciadv.aao4044