Published December 22, 2022
| Version 1.0
Software
Open
Automatic fluorite grade identification using borehole images and machine learning-based models
Creators
- 1. Universidad Politécnica de Madrid – ETSI Minas y Energía
- 2. Minera de Órgiva S.L / Universidad de Salamanca – GIR Charrock
Description
MATLAB scripts for estimating the ore grade from images of borehole logs using support vector machine techniques. It reproduces the calculations shown in the paper: E. Li, P. Segarra, J.A. Sanchidrián, S.Gómez, A. Fernández, R Navarro, M. Bernardini. 2022. Automatic fluorite grade identification using borehole images and machine learning-based models. Computers and Geosciences. Submitted
Software required: MATLAB 2020b
External functions required:
- The integrated library for support vector classification (SVC) and regression (SVR) LIBSVM Version 3.3. LIBSVM has been developed by "Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27". Download website: https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
- The optimization of the SVR and SVC is based on the Salp Swarm Algorithm developed by "Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z.,Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in engineering software, 114, 163-191." The original code of Salp Swarm Algorithm can be found in https://seyedalimirjalili.com/projects
Files
Readme.txt
Files
(70.4 kB)
Name | Size | Download all |
---|---|---|
md5:0e9c499a96d765752be61f2f75d4d6c4
|
565 Bytes | Download |
md5:eb50332cb204ac49a82ac2f4787e3eb2
|
3.9 kB | Download |
md5:53ed501c7d3fb5a1e87a460ed4b3f2e6
|
14.7 kB | Download |
md5:54d7b99708080bed974c67a799745612
|
749 Bytes | Download |
md5:47e077d1543c99d9d4f41e66a4e9200a
|
5.9 kB | Preview Download |
md5:708716d44029c5159e779a39ffa3b571
|
378 Bytes | Download |
md5:72d3b20e4e1f629ef518f6e368d9f107
|
21.0 kB | Download |
md5:e8cf6ebd0b697cdd219d4637779255cc
|
16.8 kB | Download |
md5:3d99661ba1c9ee65856cce9b81fe57de
|
1.4 kB | Download |
md5:9dba7b014ebe6937448738a45c2bc889
|
2.1 kB | Download |
md5:efa72fb01d9aea7610db88093aad105d
|
2.9 kB | Download |