HaN-Seg: The head and neck organ-at-risk CT & MR segmentation dataset
- 1. University of Ljubljana, Faculty of Electrical Engineering
- 2. Institute of Oncology Ljubljana
- 3. University of Copenhagen, Department of Computer Science
Description
The HaN-Seg: Head and Neck Organ-at-Risk CT & MR Segmentation Dataset is a publicly available dataset of anonymized head and neck (HaN) images of 42 patients that underwent both CT and T1-weighted MR imaging for the purpose of image-guided radiotherapy planning. In addition, the dataset also contains reference segmentations of 30 organs-at-risk (OARs) for CT images in the form of binary segmentation masks, which were obtained by curating manual pixel-wise expert image annotations. A full description of the HaN-Seg dataset can be found in:
G. Podobnik, P. Strojan, P. Peterlin, B. Ibragimov, T. Vrtovec, "HaN-Seg: The head and neck organ-at-risk CT & MR segmentation dataset", Medical Physics, 2023. https://doi.org/10.1002/mp.16197,
and any research originating from its usage is required to cite this paper.
In parallel with the release of the dataset, the HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge is launched to promote the development of new and application of existing state-of-the-art fully automated techniques for OAR segmentation in the HaN region from CT images that exploit the information of multiple imaging modalities, in this case from CT and MR images. The task of the HaN-Seg challenge is to automatically segment up to 30 OARs in the HaN region from CT images in the devised test set, consisting of 14 CT and MR images of the same patients, given the availability of the training set (i.e. the herein publicly available HaN-Seg dataset), consisting of 42 CT and MR images of the same patients with reference 3D OAR binary segmentation masks for CT images.
Notes
Files
HaN-Seg.zip
Files
(4.9 GB)
Name | Size | Download all |
---|---|---|
md5:c3d3070de3034933a63031b73b9cf0fc
|
4.9 GB | Preview Download |
Additional details
Related works
- Is described by
- Journal article: 10.1002/mp.16197 (DOI)