BigBrain-MR: a new digital phantom with anatomically-realistic magnetic resonance properties at 100-µm resolution
- 1. CSEM - Swiss Center for Electronics and Microtechnology
- 2. CIBM Center for Biomedical Imaging
Description
BigBrain-MR is a novel digital phantom with realistic anatomical detail up to 100-µm resolution, including multiple MRI contrasts and properties that affect image generation. This phantom was generated from the publicly available BigBrain histological dataset and from lower-resolution in-vivo 7T-MRI data, using a new image processing framework that allows mapping the general properties of in-vivo data into the fine anatomical scale of BigBrain.
The dataset includes:
- BigBrain original contrast and a new atlas with 20 ROIs;
- T1-weighted image and T1 map;
- T2*-weighted images and R2* map;
- Magnetic susceptibility map (QSM);
- Background magnetic field map;
- Complex coil sensitivity maps (32ch-receive RF array);
- Bias field map.
Information about each image/map (including data type and amplitude scaling) is provided in data_info.txt.
Additionally, we have included a script with usage examples in Python that illustrate how the data can be loaded, processed and combined for diverse simulation purposes.
BigBrain-MR is presented, described and tested in the following peer-reviewed article:
C. Sainz Martinez, M. Bach Cuadra, J. Jorge. BigBrain-MR: a new digital phantom with anatomically-realistic magnetic resonance properties at 100-µm resolution for magnetic resonance methods development. NeuroImage 2023. DOI: 10.1016/j.neuroimage.2023.120074
Files
data_info.txt
Files
(33.8 GB)
Name | Size | Download all |
---|---|---|
md5:f0bcd3f8fb1e886995ca34135316a49d
|
48.8 MB | Download |
md5:8ea2adf73182317ce648ef24610cab57
|
6.4 GB | Download |
md5:e0caf38161a62b8090eeac7d08c94cbf
|
6.4 GB | Download |
md5:9d6adaa99ceba124f810afae2400f5f0
|
3.1 GB | Download |
md5:3e74b50cbe969de5bf049a1c1751db36
|
50.9 MB | Download |
md5:b0c1e41aab6be7bb375e23e358e25715
|
6.7 MB | Download |
md5:c3676657d2854bcad45d3bea73a7ac20
|
88.5 MB | Download |
md5:c344b35b3c10d270be57765bea140738
|
3.0 MB | Download |
md5:9a777d9ceeb5eeb7a13532a7af08b9fa
|
558.9 kB | Download |
md5:be84f174317993ee15acba8c1224d950
|
23.8 MB | Download |
md5:df3bc4808a4ec6df16daf12907a8010d
|
2.3 GB | Download |
md5:63cafa1303ff6734e7c8d69320bf247f
|
38.5 MB | Download |
md5:7eef45c0702c39953731a1b48d5d60ea
|
5.1 MB | Download |
md5:09f702256e8ee980f061c0b63b1a9428
|
2.4 GB | Download |
md5:bb2c9241287d2a08bda6c0f66849b171
|
42.6 MB | Download |
md5:faa12e5f08ed87eb3012705f028f3335
|
5.8 MB | Download |
md5:d0f0b36f939f8640d13f985934451eb5
|
2.6 GB | Download |
md5:306c22af61207aa77c857c04a8fe1e92
|
43.9 MB | Download |
md5:689e22a04fdf814b54765f38961f0101
|
5.9 MB | Download |
md5:1e2a5b729a196a0459350bb4aba7e6d6
|
2.6 GB | Download |
md5:207434e0de2e8f923e56bcf9e09b856e
|
44.9 MB | Download |
md5:c49cc28d5278e303041dba8a55ad863d
|
6.0 MB | Download |
md5:d1e37fb5315b97b745ab465b435ad2e4
|
2.5 GB | Download |
md5:489e59b80ff503c5c4ba2cb8987345a5
|
43.2 MB | Download |
md5:e9d0af2e583dacb510217688fc9e1ffa
|
5.9 MB | Download |
md5:62d3ad8ba95771658b93a29332d82bbe
|
2.5 GB | Download |
md5:3f90e7aec1b8b473b793069cfd89d275
|
44.5 MB | Download |
md5:44cbfe0511468344f7efa173d53e45e3
|
5.9 MB | Download |
md5:7c8132f55a45a7bb96ce2aaeaf83daf9
|
2.5 GB | Download |
md5:5d8910b5583e9794c6435cfe98524e2f
|
44.5 MB | Download |
md5:989ab11ffb5bce84d5bbd231f816dcef
|
6.0 MB | Download |
md5:7e9e8a30ab9bc487ec8ab3a8407c4264
|
3.1 kB | Preview Download |
md5:feeb07e9d8cb9745937b7bd4d108e4c7
|
19.4 kB | Preview Download |
md5:666e3c2a786bdfe5a03dbb547a53e2fb
|
7.4 kB | Download |
Additional details
Related works
- Is described by
- Journal article: 10.1016/j.neuroimage.2023.120074 (DOI)
Funding
- Swiss National Science Foundation
- Bridging gaps in the neuroimaging puzzle: advanced techniques for comprehensive mapping of brain anatomy and multi-scale network activity PZ00P2_185909