Análisis de anomalías de mercado usando Machine Learning: un caso de la Bolsa Mexicana de Valores, BMV, 2000-2020
- 1. Universidad Nacional Autónoma de México
- 2. Universidad Autónoma del Estado de México
- 1. Universidad Técnica de Babahoyo
- 2. ManglarEditores
Description
Resumen
El presente trabajo tiene la finalidad de analizar la presencia de anomalías en el mercado de valores mexicano; particularmente, se concentra en determinar empíricamente el desempeño de un conjunto reducido: momentum, volatilidad, reversión a la media y efecto enero, fin de mes y fin de semana. Se proponen nuevos criterios de cálculo de las anomalías a partir de los movimientos de los precios con el objetivo de revisar sus efectos en los rendimientos, en contraste con el mercado para el periodo de 2000 a 2020. El estudio muestra los resultados en términos de rendimientos a partir de la identificación de una anomalía en comparados con los promedios del principal índice del país: el S&P IPC (Índice de Precios y Cotizaciones), y es la serie de precios a analizar. Se utilizan metodologías de machine learning (Regresión logística, Perceptrón multicapa, MLP), Máquinas de soporte vectorial optimizada (SMO) y Método Logit) para analizar los modelos y los resultados se evalúan con datos dentro y fuera de la muestra (validación cruzada y partición de dos tercios para entrenar y restante para probar). Los resultados muestran que el momentum tiene mayor presencia, dado el comportamiento del índice, y reversión a la media y volatilidad son menos ocurrentes; el efecto enero presenta porcentajes ligeramente inferiores a los del momentum.
Abstract
The purpose of this paper is to analyze the presence of anomalies in the Mexican stock market; in particular, it focuses on empirically determining the performance of a reduced set: momentum, volatility, mean reversion, and January, month-end, and weekend effects. New criteria for calculating anomalies based on price movements are proposed with the aim of reviewing their effects on returns, in contrast to the market for the period from 2000 to 2020. The study shows the results in terms of returns from the identification of an anomaly in comparison to the averages of the country’s main index: the S&P IPC (Index of Prices and Quotations), and it is the series of prices to be analyzed. Machine learning methodologies (Logistic Regression, Multilayer Perceptron (MLP), Support Vector Optimized Machines (SMO) and Logit Method) are used to analyze the models and the results are evaluated with data inside and outside the sample (cross-validation and partition). two-thirds to train and remaining to test). The results show that momentum has a greater presence, given the behavior of the index, and mean reversion and volatility are less frequent; the January effect presents percentages slightly lower than those of momentum.
Notes
Files
CAP 6 UEPLC 2022 vol 5 no. 1.pdf
Files
(649.6 kB)
Name | Size | Download all |
---|---|---|
md5:5c91980d1f0744baa10f2a974719e838
|
649.6 kB | Preview Download |
Additional details
Related works
- Is cited by
- Journal article: 10.5281/zenodo.7415936 (DOI)
- Journal article: 2631-2689 (ISSN)
- Journal article: 2953-6529 (ISSN)
- Book: 978-9978-11-063-8 (ISBN)
References
- Ansah, K., Denwar, I. W., & Appati, J. K. (2022). Intelligent Models for Stock Price Prediction: A Comprehensive Review. Journal of Information Technology Research (JITR), 15(1), 1-17. https://doi.org/jgtj
- Asadi, S., Hadavandi, E., Mehmanpazir, F., & Nakhostin, M. (2012). Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst., 35, 245-258. https://bit.ly/3CAtexJ
- Barberis, N., & Thaler, R. (2022, September). A Survey of Behavioral Finance. In G.M. Constantinides, M. Harris & R. M. Stulz (Eds.), Handbook of the Economics of Finance (pp. 294-305). Elsevier. https://bit.ly/3VmHFOu
- Cabello, A., & Ortíz, E. (2003). Day of the week and month of the year anomalies in the Mexican stock market. Revista Mexicana de Economía y Finanzas, 2(3), 217-241. https://bit.ly/3gbXuHB
- Chopra, R., & Sharma, G. D. (2021, November 4). Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review and Research Agenda. Journal of Risk and Financial Management, 14(11), 1-34. https://doi.org/jgtk
- Damodaran, A. (2012, April). Investment Valuation: Tools and Techniques for Determining the Value of Any Asset. Wiley Finance.
- Diaz-Ruiz, P., Herrerías, R., & Vasquez, A. (2020, July). Anomalies in Emerging Markets: The Case of Mexico. The North American Journal of Economics and Finance, 53, 101188. https://doi.org/gkx36k
- Duarte, J., Sierra, K., & Garcés, L. (2013, 2-4 de octubre). Anomalías de Mercado en la Bolsa de Valores de México [Ponencia]. XVIII Congreso International de Contaduría, Administración e Informática, México D. F., México. https://bit.ly/3S1OzWI
- Fama, E. (1970, May). Efficient Capital Markets: A Review of Theory and Empirical Work. Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association New York, December, 28-30, 25(2), 383-417. https://doi.org/b3kfdr
- Fama, E., & French, K. (1992, June). The Cross-Section of Expected Stock Returns. The Journal of Finance, 47(2), 427-465. https://doi.org/bpg8
- Ferreira, F., Gandomi, A., & Cardoso, R. (2021). Artificial Intelligence Applied to Stock Market Trading: A Review. IEEE Access, 9, 30898-30917. https://bit.ly/3EFW6XZ
- García, M., Jalal, A., Garzón, L., & López, J. (2013, julio-diciembre). Métodos para predecir índices bursátiles. Ecos de Economía, 17(37), 51-82. https://bit.ly/3S6Zezc
- Green, J., Hand, J. R., & Zhang, F. (2013, September). The supraview of return predictive signals. Review of Accounting Studies, 18(3), 692-730. https://bit.ly/3evwNNU
- Hinojosa, R., Trejo, L., Hervert-Escoba, L., Hernández-Gress, N., & González, E. (2021, October). Mexican Stock Return Prediction with Differential Evolution for Hyperparameter Tuning. Proceedings, Advances in Computational Intellignece, MICAI 2021, Mexico City, Mexico, October 25-30, 2021, pp. 355-368. https://bit.ly/3PFrqtD
- Jensen, M., Black, F., & Scholes, M. (2006, June 13). The Capital Asset Pricing Model: Some Empirical Tests. In M. Jensen, Studies in the theory of capital markets, (pp. 79-121). Praeger Publishers. https://bit.ly/3S5IaK1
- Khursheed, A., Naeem, M., Ahmed, A., & Mustafa, F. (2020, January 30). Adaptive market hypothesis: An empirical analysis of time–varying market efficiency of cryptocurrencies. Cogent Economics & Finance, 8(1). https://doi.org/jgth
- Lo, A. W. (2005, March 8). Reconciling Efficient Markets with Behavioral Finance: The Adaptive Markets Hypothesis. Journal of Investment Consulting, 7(2), 21-44. https://bit.ly/3CW44uW
- Montalván, D., Barrón, R., & Godoy, S., (2018). Generating Trading Strategies in the Mexican Stock Market: A Pattern Recognition Approach. Research In Computer Science, 147(12), 107-114. https://bit.ly/3FNgKo0
- Munir, A. F., Sukor, M. E. & Shaharuddin, S. S., (2022, January-March). Adaptive Market Hypothesis and Time-varying Contrarian Effect: Evidence from Emerging Stock Markets of South Asia. SAGE Open journals, 12(1),1-16. https://doi.org/jgtn
- Rho, C., Fernández, R., & Palma, B. (2021, May). A Sentiment-based Risk Indicator for the Mexican Finantial Sector [Documento de Investigación]. Banco de México. https://bit.ly/3PMXkV8
- Rodríguez, D., & Morales, A. (2009). Los efectos "día de la semana" y "mes del año" para los rendimientos de una muestra de acciones que cotizan en la bolsa mexicana de valores. XV Congreso Internacional de Contaduría, Administración e Informática. https://bit.ly/3fYVMt6
- Semaan, D., Harb, A., & Kassem, A. (2014). Forecasting exchange rates: Artificial neural networks vs regression. Third International Conference on e-Technologies and Networks for Development (ICeND), 156-161. https://doi.org/jgtp
- Tversky, A., & Thaler, R. H. (1990, Spring). Anomalies: Preference Reversals. Journal of Economics Perspectives, 4(2), 201-211. https://bit.ly/3MzClDw
- Weiwei, J. (2021, December 1). Applications of Deep Learning in Stock Market Prediction: Recent Progress. Expert Systems with Applications, 184, 115537. https://doi.org/gn38jj
- Wong, W.-K. (2020, February). Editorial Statement and Research Ideas for Efficiency and Anomalies in Stock Markets [Editorial]. Economies, MDPI Journal, 8(1). 1-4. https://bit.ly/3rXCXt9
- Woo, K.-Y., Mai, C., McAleer, M. & Wong, W.-K. (2020, March 12). Review on Efficiency and Anomalies in Stock Markets. Economies, MDPI Journal, 8(20), 1-51. https://bit.ly/3VrMW7v
- Yahoo! Finanzas. (s. f.). Estadísticas financieras en línea. Recuperadas el 10 de mayo de 2020, de https://bit.ly/2J9KvTL