An Innovative Scheme to Confront the Trade‐Off Between Water Conservation and Heat Alleviation With Environmental Justice for Urban Sustainability: The Case of Phoenix, Arizona
Creators
- 1. Texas State University
- 2. The University of Oklahoma
- 3. Arizona State University
Description
The manuscript for this dataset is accepted by AGU Advances and can be accessed here: link. Please cite the literature when using the datasets.
How to cite this article: Yuanhui Zhu, Soe Myint, Xin Feng, Yubin Li. An Innovative Scheme to Confront the Trade‐Off Between Water Conservation and Heat Alleviation With Environmental Justice for Urban Sustainability: The Case of Phoenix, Arizona. AGU Advances, 4, e2022AV000816. https://doi.org/10.1029/2022AV000816
This study aims to develop a practical and integrated framework to tackle the tradeoff between land surface temperature (LST) reduction and water conservation for heat mitigation and resilience planning in Phoenix, Arizona. We developed a multi-objective framework of spatial optimization for priority areas that considers environmental justice. We employed the priority areas (i.e., residential districts, socio-economically disadvantaged neighborhoods, hotspot regions, and opportunity areas), ECOSTRESS-based LST, actual evapotranspiration (ETa, as a proxy to water use), Landsat-based LST and ETa changes (2000–2020), and the evaporative stress index (ESI). These datasets are used to identify the priority areas in which environmental conditions need to be improved seriously and (2) spatially optimize the placement of new green space (tree %, grass %) in the priority areas to realize the most significant LST reduction and minimum OWU. We provide the results of the new green space configurations with the scenarios for the percentage of new vegetation coverage (including trees and grass) overall increased to 25%, 35%, and 45% within the entire study areas, residential districts, socio-economically disadvantaged neighborhoods, and hotspot regions.
Category | Dataset | Resolution | Source/method | Time |
Environmental database | Summer daytime LST | 70m | ECOSTRESS | 2019 |
Environmental database | Summer nighttime LST | 70m | ECOSTRESS | 2019 |
Environmental database | Summer ETa | 70m | ECOSTRESS | 2019 |
Environmental database | Summer ESI | 70m | ECOSTRESS | 2019 |
Environmental change database | Trends of summer LST changes | 30m | Landsat-based Statistical Mono-Window algorithm | 2000-2020 |
Environmental change database | Trends of summer ETa changes | 30m | Landsat-based Simplified Surface Energy Balance | 2000-2020 |
The results of new green space configurations | The spatial distributions of new green space | -- | Spatial optimization | -- |
note: LULC: Land use and land cover; LST: Land Surface Temperature; ETa: Actual Evapotranspiration; ESI: Evaporative Stress Index
We provide the different scenarios in shapefile format for spatial distributions of new space configurations. The naming convention for attribute tables in shapefile is :
VV_new_perNN_LSTWW
where:
- VV = New vegetation for tree or grass
- NN = The scenarios with new vegetation increased to 25%, 35%, or 45% (unit: %)
- WW = The weight values of land surface temperature range from 0 to 1 (unit: %) when executing spatial optimization for the tradeoff between land surface temperature reduction and outdoor water use conservation with vegetation coverage. The weight of 0 represents that our spatial optimization models only focus on outdoor water use conservation, and the weight of 1 denotes that we only consider land surface temperature reduction.
Example: grass_new_per25_LST65 means -- new vegetation for grass; the scenario is set up by new vegetation increased to 25%; the weight of land surface temperature is 0.65.
Notes
Files
NewGreenSpaceConfiguration.zip
Files
(66.1 MB)
Name | Size | Download all |
---|---|---|
md5:c5c0b963c17ea426e0d0944cc50016d0
|
12.3 MB | Preview Download |
md5:cb6a88eec1efc3609559767f6e0d5d41
|
3.1 MB | Preview Download |
md5:5df2627e0ca4fbd104868803a752a1cd
|
2.6 MB | Preview Download |
md5:5ae18297a55b6e9a05922dc2c125a019
|
14.9 MB | Preview Download |
md5:8958e211ab8068c0a01ad0d8b2a4a326
|
3.1 MB | Preview Download |
md5:71430aa52e926c79cf0f31ddf77bc51c
|
14.9 MB | Preview Download |
md5:0c0845123eb4f33f5dbc40f7a45a9209
|
14.9 MB | Preview Download |