Emotion Detection using CNN-LSTM based Deep Learning Model on Tweet Dataset
Authors/Creators
- 1. Associate Professor, Department of Information Technology, PSG College of Technology, Coimbatore, India
- 2. Assistant Professor, Department of Information Technology, PSG College of Technology, Coimbatore, India
- 3. UG Student, Department of Information Technology, PSG College of Technology, Coimbatore, India
Description
Emotion recognition from text is an important application of natural language processing. It has vast potential in many fields like marketing, artificial intelligence, political science, psychology etc. In recent times, more attention has been brought to this field because of availability and access to large amounts of opinionated data. Over the years many techniques have been proposed to tackle this problem. This paper focuses on the problem of emotion recognition from a dataset containing labelled tweets using a CNN-LSTM classifier model. The feature encoding for this model was done using the pre-trained Word2Vec word embedding and the model classified the tweets into five emotion classes: anger, sadness, joy, fear and love. The classifier was trained on 80% of the dataset and tested on the remaining 20%. The results of this proposed system was then compared with results from Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM) and Convolution Neural Network (CNN) models. The proposed system was found to outperform all of them with an accuracy of 93.3%.
Files
Emotion Detection -Formatted Paper.pdf
Files
(380.3 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:c3a2461e5ddbc99b2afd33ed1d6399f8
|
380.3 kB | Preview Download |
Additional details
References
- Ahmed, S., Haman, S., Atwell, E., & Ahmed, F. (2017). Aspect based sentiment analysis framework using data from social media network. IJCSNS Int. J. Comput. Sci. Netw. Secur, 17, 100-105.
- Singh, J. (2014). Big data analytic and mining with machine learning algorithm. Int J Inform Comput Technol, 4(1), 33-40.
- Scherer, K. R., & Wallbott, H. (1990). International survey on emotion antecedents and reactions (isear).
- Strapparava, C., & Mihalcea, R. (2007, June). Semeval-2007 task 14: Affective text. In Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007) (pp. 70-74).
- Ho, V. A., Nguyen, D. H. C., Nguyen, D. H., Pham, L. T. V., Nguyen, D. V., Nguyen, K. V., & Nguyen, N. L. T. (2019, October). Emotion recognition for vietnamese social media text. In International Conference of the Pacific Association for Computational Linguistics (pp. 319-333). Springer, Singapore.
- Soni, H. K. (2019). Machine Learning –A New Paradigm of AI. International Journal of Scientific Research in Network Security and Communication, 7(3), 31-32.
- Angiani, G., Ferrari, L., Fontanini, T., Fornacciari, P., Iotti, E., Magliani, F., & Manicardi, S. (2016, September). A Comparison between Preprocessing Techniques for Sentiment Analysis in Twitter. In KDWeb.
- Haque, T. U., Saber, N. N., & Shah, F. M. (2018, May). Sentiment analysis on large scale Amazon product reviews. In 2018 IEEE international conference on innovative research and development (ICIRD) (pp. 1-6). IEEE.
- de Godoi Brandão, J., & Calixto, W. P. (2019, September). N-Gram and TF-IDF for Feature Extraction on Opinion Mining of Tweets with SVM Classifier. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1-5). IEEE.
- Shah, F. M., Reyadh, A. S., Shaafi, A. I., Ahmed, S., & Sithil, F. T. (2019, September). Emotion detection from tweets using AIT2018 dataset. In 2019 5th International Conference on Advances in Electrical Engineering (ICAEE) (pp. 575-580). IEEE.