Published November 4, 2008 | Version v1
Conference paper Open

A Dynamic Electrowetting Simulation using the Level-Set Method

  • 1. Institute for Bioprocessing and Analytical Measurement Techniques
  • 2. Tallinn University of Technology

Description

A simulation of electrowetting driven droplet dynamics is performed using the level-set two-phase flow application mode of COMSOL Multiphysics for a sessile droplet and for a droplet in a microchannel. For the sessile drop, the response of the drop to a step voltage is studied. For the droplet in a microchannel, the contact angle at one edge of the drop is varied in order to show droplet actuation.

Notes

The authors would like to thank the European Community for financially supporting the FP6 Marie Curie ToK project 29857 InFluEMP

Files

Cahill et al. - A Dynamic Electrowetting Simulation using the Leve.pdf

Additional details

Funding

Integration of fluidic and electric microscaled principles (INFLUEMP) 29857
European Commission

References

  • J. L. Jackel, S. Hackwood and G. Beni, Electrowetting optical switch, Applied Physics Letters, 40, 4-5 (1982)
  • B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: An application of electrowetting, The European Physical Journal E, 3, 159-163 (2000)
  • R. A. Hayes and B. J. Feenstra, Video-speed electronic paper based on electrowetting, Nature, 425, 383-385 (2003)
  • T. Roques-Carmes, R. A. Hayes, B. J. Feenstra and L. J. M. Schlangen, Liquid behavior inside a reflective display pixel based on electrowetting, Journal of Applied Physics, 95, 4389 (2004)
  • M. G. Pollack, R. B. Fair and A. D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications, Applied Physics Letters, 77, 1725-1726 (2000)
  • S. K. Cho, H. Moon and C. J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of Microelectromechanical Systems, 12, 70-80 (2003)
  • P. Paik, V. K. Pamula and R. B. Fair, Rapid droplet mixers for digital microfluidic systems, Lab on a Chip, 3, 253-259 (2003)
  • V. Srinivasan, V. K. Pamula and R. B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 4, 310-315 (2004)
  • G. Lippmann, Relation entre les phénomènes électriques et capillaires, Annales de Chimie et de Physique, 5, 494 (1875)
  • F. Mugele and J.-C. Baret, Electrowetting: from basics to applications, Journal of Physics: Condensed Matter, R705 (2005)
  • B. S. Massey, Mechanics of Fluids, London: Chapman and Hall (1989)
  • J.-L. Barrat and L. Bocquet, Large Slip Effect at a Nonwetting Fluid-Solid Interface, Physical Review Letters, 82, 4671-4674 (1999)
  • Y. Zhu and S. Granick, Limits of the Hydrodynamic No-Slip Boundary Condition, Physical Review Letters, 88, 106102 (2002)
  • E. Bonaccurso, H.-J. Butt and V. S. J. Craig, Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System, Physical Review Letters, 90, 144501 (2003)
  • Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems, Journal of Fluid Mechanics, 334, 211-249 (1997)
  • E. B. Dussan V., The moving contact line: the slip boundary condition, Journal of Fluid Mechanics, 77, 665-684 (1976)
  • Y. D. Shikhmurzaev, Dynamic contact angles and flow in vicinity of moving contact line, AIChE Journal, 42, 601-612 (1996)