Spectral Imprints from Electromagnetic Cascades in Blazar Jets
Contributors
Supervisors:
- 1. Julius-Maximilians-Universität Würzburg
- 2. Friedrich-Alexander-Universität Erlangen-Nürnberg
Description
The extragalactic gamma-ray sky is dominated by blazars, active galactic nuclei (AGN) with a relativistic jet that is closely aligned with the line of sight. Galaxies develop an active nucleus if the central supermassive black hole (BH) accretes large amounts of ambient matter and magnetic flux. The inflowing mass accumulates around the plane perpendicular to the accretion flow's angular momentum. The flow is heated through viscous friction and part of the released energy is radiated as blackbody or non-thermal radiation, with luminosities that can dominate the accumulated stellar luminosity of the host galaxy. A fraction of the accretion flow luminosity is reprocessed in a surrounding field of ionised gas clouds. These clouds, revolving around the central BH, emit Doppler-broadened atomic emission lines. The region where these broad-line-emitting clouds are located is called broad-line region (BLR).
About one in ten AGN forms an outflow of radiation and relativistic particles, called a relativistic jet. According to the Blandford-Znajek mechanism, this is facilitated through electromagnetic processes in the magnetosphere of a spinning BH. The latter induces a magnetospheric poloidal current circuit, generating a decelerating torque on the BH and inducing a toroidal magnetic field. Consequently, rotational energy of the BH is converted to Poynting flux streaming away mainly along the rotational axis and starting the jet. One possibility for particle acceleration near the jet base is realised by magnetospheric vacuum gaps, regions temporarily devoid of plasma, such that an intermittent electric field arises parallel to the magnetic field lines, enabling particle acceleration and contributing to the mass loading of the jets.
Magnetised structures, containing bunches of relativistic electrons, propagate away from the galactic nucleus along the jets. Assuming that these electrons emit synchrotron radiation and that they inverse-Compton (IC) up-scatter abundant target photons, which can either be the synchrotron photons themselves or photons from external emitters, the emitted spectrum can be theoretically determined. Additionally taking into account that these emission regions move relativistically themselves and that the emission is Doppler-boosted and beamed in forward direction, the typical two-hump spectral energy distribution (SED) of blazars is recovered.
There are however findings that challenge this well-established model. Short-time variability, reaching down to minute scales at very high energy gamma rays, is today known to be a widespread phenomenon of blazars, calling for very compact emission regions. In most models of such optically thick emission regions, the gamma-ray flux is usually pair-absorbed exponentially, without considering the cascade evolving from the pair-produced electrons. From the observed flux, it is often concluded that emission emanates from larger distances where the region is optically thin, especially from outside of the BLR. Only in few blazars gamma-ray attenuation associated with pair absorption in the BLR was clearly reported.
With the advent of sophisticated high-energy or very high energy gamma-ray detectors, like the Fermi Large Area Telescope or the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes, besides the extraordinarily fast variability spectral features have been found that cannot be explained by conventional models reproducing the two-hump SED. Two such narrow spectral features are discussed in this work. For the nearby blazar Markarian 501, hints to a sharp peak around 3 TeV have been reported from a multi-wavelength campaign carried out in July 2014, while for 3C 279 a spectral dip was found in 2018 data, that can hardly be described with conventional fitting functions. In this work it is examined whether these spectral peculiarities of blazar jet emission can be explained, if the full radiation reprocessing through an IC pair cascade is accounted for.
Such a cascade is the multiple concatenation of IC scattering events and pair production events. In the cascades generally considered in this work, relativistic electrons and high-energy photons are injected into a fixed soft target photon field. A mathematical description for linear IC pair cascades with escape terms is delivered on the basis of preliminary works. The steady-state kinetic equations for the electrons and for the photons are determined, whereby it is paid attention to an explicit formulation and to motivating the correct integration borders of all integrals from kinematic constraints. In determining the potentially observable gamma-ray flux, both the attenuated injected flux and the flux evolving as an effect of IC up-scattering, pair absorption and escape are incorporated, giving the emerging spectra very distinct imprints.
Much effort is dedicated to the numerical solution of the electrons' kinetic equation via iterative schemes. It is explained why pointwise iteration from higher to lower Lorentz factors is more efficient than iterating the whole set of sampling points. The algorithm is parallelised at two positions. First, several workers can perform pointwise iterations simultaneously. Second, the most demanding integral is cut into a number of part integrals which can be determined by multiple workers. Through these measures, the Python code can be readily applied to simulate steady-state IC pair cascades with escape.
In the case of Markarian 501 the developed framework is as follows. The AGN hosts an advection-dominated accretion flow with a normalised accretion rate of several 10−4 and an electron temperature near 1010 K. On the one hand, the accretion flow illuminates the few ambient gas clouds with approximate radius 1011 m, which reprocess a fraction 0.01 of the luminosity into hydrogen and helium emission lines. On the other hand, the gamma rays from the accretion flow create electrons and positrons in a sporadically active vacuum gap in the BH magnetosphere. In the active gap, a power of roughly 0.001 of the Blandford-Znajek power is extracted from the rotating BH through a gap potential drop of several 1018 V, generating ultra-relativistic electrons, which subsequently are multiplied by a factor of about 106 through interaction with the accretion flow photons. This electron beam propagates away from the central engine and encounters the photon field of one passing ionised cloud. The resulting IC pair cascade is simulated and the evolving gamma-ray spectrum is determined. Just above the absorption troughs due to the hydrogen lines, the spectrum exhibits a narrow bump around 3 TeV. When the cascaded emission is added to the emission generated at larger distances, the observed multi-wavelength SED including the sharp peak at 3 TeV is reproduced, underlining that radiation processes beyond conventional models are motivated by distinct spectral features.
The dip in the spectrum of 3C 279 is addressed by a similar cascade model. Three types of injection are considered, varying in the ratio of the photon density to the electron density and varying in the spectral shape. The IC pair cascade is assumed to happen either in the dense BLR photon field with a luminosity of several 1037 W and a radial size of few 1014 m or in the diluted photon field outside of the BLR. The latter scenario is however rejected as the spectral slope around several 100 MeV and the dip at few 10 GeV cannot be reconciled within this model. The radiation cascaded in the BLR can explain the observational data, irrespective of the assumed injected rate. It is therefore concluded that for this period of gamma-ray emission, the radiation production happens at the edge of the BLR of 3C 279.
Both investigations show that IC pair cascades can account for fine structure seen in blazar SEDs. It is insufficient to restrict the radiation transport to pure exponential absorption of an injection term. Pair production and IC up-scattering by all generations of photons and electrons in the optically thick regime critically shape the emerging spectra. As the advent of future improved detectors will provide more high-precision spectra, further observations of narrow spectral features can be expected. It seems therefore recommendable to incorporate cascading into conventional radiation production models or to extend the model developed in this work by synchrotron radiation.
Notes
Files
Diss Christoph Wendel 2022.pdf
Files
(5.4 MB)
Name | Size | Download all |
---|---|---|
md5:433fb022e3b05bacb8b7a999a891f2d3
|
5.4 MB | Preview Download |
Additional details
Related works
- Is described by
- Thesis: urn:nbn:de:bvb:20-opus-290076 (URN)
References
- Abbott, R. et al. (Apr. 2021). "GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run". In: Physical Review X 11.2, 021053, p. 021053. URL: https://ui.adsabs.harvard.edu/abs/2021PhRvX..11b1053A
- Abdo, A. A. et al. (June 2010). "The Spectral Energy Distribution of Fermi Bright Blazars". In: ApJ 716.1, pp. 30–70. URL: https://ui.adsabs.harvard.edu/abs/2010ApJ...716...30A
- Abdo, A. A. et al. (Feb. 2011). "Insights into the High-energy γ-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era". In: ApJ 727.2, 129, p. 129. URL: https://ui.adsabs.harvard.edu/abs/2011ApJ...727..129A
- Abdollahi, S. et al. (Mar. 2020). "Fermi Large Area Telescope Fourth Source Catalog". In: ApJS 247.1, 33, p. 33. URL: https://ui.adsabs.harvard.edu/abs/2020ApJS..247...33A
- Abolmasov, P. and Poutanen, J. (Jan. 2017). "Gamma-ray opacity of the anisotropic stratified broadline regions in blazars". In: MNRAS 464.1, pp. 152–169. URL: https://ui.adsabs.harvard.edu/abs/2017MNRAS.464..152A
- Abramowitz, M. and Stegun, I. A. (1968). "Handbook of mathematical functions with formulas, graphs and mathematical tables". URL: https://ui.adsabs.harvard.edu/abs/1968hmfw.book.....A
- Acciari, V. A. et al. (June 2021). "Multiwavelength variability and correlation studies of Mrk 421 during historically low X-ray and γ-ray activity in 2015-2016". In: MNRAS 504.1, pp. 1427–1451. URL: https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.1427A
- Acharyya, A., Chadwick, P. M. and Brown, A. M. (Jan. 2021). "Locating the gamma-ray emission region in the brightest Fermi-LAT flat-spectrum radio quasars". In: MNRAS 500.4, pp. 5297–5321. URL: https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.5297A
- Ackermann, M. et al. (June 2016). "Minute-timescale >100 MeV γ-Ray Variability during the Giant Outburst of Quasar 3C 279 Observed by Fermi-LAT in 2015 June". In: ApJ 824.2, L20, p. L20. URL: https://ui.adsabs.harvard.edu/abs/2016ApJ...824L..20A
- Agaronyan, F. A., Atoyan, A. M. and Nagapetyan, A. M. (Apr. 1983). "Photoproduction of Electron-Positron Pairs in Compact X-Ray Sources". In: Astrophysics 19, pp. 187–194. URL: https://ui.adsabs.harvard.edu/abs/1983Ap.....19..187A
- Aharonian, F. et al. (Aug. 2007). "An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304". In: ApJ 664, pp. L71–L74. URL: https://ui.adsabs.harvard.edu/abs/2007ApJ...664L..71A
- Aharonian, F. A., Barkov, M. V. and Khangulyan, D. (May 2017). "Scenarios for Ultrafast Gamma-Ray Variability in AGN". In: ApJ 841.1, 61, p. 61. URL: https://ui.adsabs.harvard.edu/abs/2017ApJ...841...61A
- Aharonian, F. A. and Plyasheshnikov, A. V. (July 2003). "Similarities and differences between relativistic electron-photon cascades developed in matter, photon gas and magnetic field". In: Astroparticle Physics 19.4, pp. 525–548. URL: https://ui.adsabs.harvard.edu/abs/2003APh....19..525A
- Ahnen, M. L. et al. (July 2017). "First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310". In: A&A 603, A25, A25. URL: https://ui.adsabs.harvard.edu/abs/2017A&A...603A..25A
- Ahnen, M. L. et al. (July 2017). "Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009". In: A&A 603, A31, A31. URL: https://ui.adsabs.harvard.edu/abs/2017A&A...603A..31A
- Ahnen, M. L. et al. (Dec. 2018). "Extreme HBL behavior of Markarian 501 during 2012". In: A&A 620, A181, A181. URL: https://ui.adsabs.harvard.edu/abs/2018A&A...620A.181A
- Akharonian, F. A., Kririllov-Ugriumov, V. G. and Vardanian, V. V. (Oct. 1985). "Formation of Relativistic Electron-Photon Showers in Compact X-Ray Sources". In: Ap&SS 115.2, pp. 201–225. URL: https://ui.adsabs.harvard.edu/abs/1985Ap&SS.115..201A
- Albert, J. et al. (Nov. 2007). "Variable Very High Energy γ-Ray Emission from Markarian 501". In: ApJ 669, pp. 862–883. URL: https://ui.adsabs.harvard.edu/abs/2007ApJ...669..862A
- Aleksić, J. et al. (Nov. 2014). "Black hole lightning due to particle acceleration at subhorizon scales". In: Science 346, pp. 1080–1084. URL: http://ads.ari.uni-heidelberg.de/abs/2014Sci...346.1080A
- Aleksić, J. et al. (July 2014). "MAGIC observations and multifrequency properties of the flat spectrum radio quasar 3C 279 in 2011". In: A&A 567, A41, A41. URL: https://ui.adsabs.harvard.edu/abs/2014A&A...567A..41A
- Alexander, T. and Netzer, H. (Feb. 1997). "Bloated stars as AGN broad-line clouds: the emission-line profiles". In: MNRAS 284.4, pp. 967–980. URL: https://ui.adsabs.harvard.edu/abs/1997MNRAS.284..967A
- Antonucci, R. R. J. and Miller, J. S. (Oct. 1985). "Spectropolarimetry and the nature of NGC 1068." In: ApJ 297, pp. 621–632. URL: https://ui.adsabs.harvard.edu/abs/1985ApJ...297..621A
- Antonucci, R. (Jan. 1993). "Unified models for active galactic nuclei and quasars." In: ARA&A 31, pp. 473–521. URL: https://ui.adsabs.harvard.edu/abs/1993ARA&A..31..473A
- Atwood, W. B. et al. (June 2009). "The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission". In: ApJ 697.2, pp. 1071–1102. URL: https://ui.adsabs.harvard.edu/abs/2009ApJ...697.1071A
- Baade, W. and Minkowski, R. (Jan. 1954). "Identification of the Radio Sources in Cassiopeia, Cygnus A, and Puppis A." In: ApJ 119, p. 206. URL: https://ui.adsabs.harvard.edu/abs/1954ApJ...119..206B
- Baade, W. and Minkowski, R. (Jan. 1954). "On the Identification of Radio Sources." In: ApJ 119, p. 215. URL: https://ui.adsabs.harvard.edu/abs/1954ApJ...119..215B
- Balbus, S. A. and Hawley, J. F. (July 1991). "A Powerful Local Shear Instability in Weakly Magnetized Disks. I. Linear Analysis". In: ApJ 376, p. 214. URL: https://ui.adsabs.harvard.edu/abs/1991ApJ...376..214B
- Bambi, C. (June 2018). "Astrophysical Black Holes: A Compact Pedagogical Review". In: Annalen der Physik 530.6, p. 1700430. URL: https://ui.adsabs.harvard.edu/abs/2018AnP...53000430B
- Bardeen, J. M. and Petterson, J. A. (Jan. 1975). "The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes". In: ApJ 195, p. L65. URL: https://ui.adsabs.harvard.edu/abs/1975ApJ...195L..65B
- Bardeen, J. M., Press, W. H. and Teukolsky, S. A. (Dec. 1972). "Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation". In: ApJ 178, pp. 347–370. URL: https://ui.adsabs.harvard.edu/abs/1972ApJ...178..347B
- Barkov, M. V., Aharonian, F. A. and Bosch-Ramon, V. (Dec. 2010). "Gamma-ray Flares from Red Giant/Jet Interactions in Active Galactic Nuclei". In: ApJ 724.2, pp. 1517–1523. URL: https://ui.adsabs.harvard.edu/abs/2010ApJ...724.1517B
- Barth, A. J., Ho, L. C. and Sargent, W. L. W. (Feb. 2002). "Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501". In: ApJ 566, pp. L13–L16. URL: https://ui.adsabs.harvard.edu/abs/2002ApJ...566L..13B
- Barthel, P. D. (Jan. 1989). "Is Every Quasar Beamed?" In: ApJ 336, p. 606. URL: https://ui.adsabs.harvard.edu/abs/1989ApJ...336..606B
- Becerra González, J. et al. (July 2019). "Study of the Variable Broadband Emission of Markarian 501 during the Most Extreme Swift X-ray Activity". In: 36th International Cosmic Ray Conference (ICRC2019). Vol. 36. International Cosmic Ray Conference, 554, p. 554. URL: https://ui.adsabs.harvard.edu/abs/2019ICRC...36..554B
- Becerra González, J. et al. (July 2021). "Optical spectral characterization of the gamma-ray blazars S4 0954+65, TXS 1515-273, and RX J0812.0+0237". In: MNRAS 504.4, pp. 5258–5269. URL: https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.5258B
- Beckmann, V. and Shrader, C. R. (2012). "Active Galactic Nuclei". Wiley-VCH GmbH. URL: https://ui.adsabs.harvard.edu/abs/2012agn..book.....B
- Bentz, M. C. et al. (Oct. 2021). "A Detailed View of the Broad-line Region in NGC 3783 from Velocity-resolved Reverberation Mapping". In: ApJ 920.2, 112, p. 112. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...920..112B
- Blandford, R. D. and Payne, D. G. (June 1982). "Hydromagnetic flows from accretion disks and the production of radio jets." In: MNRAS 199, pp. 883–903. URL: https://ui.adsabs.harvard.edu/abs/1982MNRAS.199..883B
- Blandford, R. D. and Rees, M. J. (Jan. 1978). "Some comments on radiation mechanisms in Lacertids." In: BL Lac Objects. Ed. by A. M. Wolfe, pp. 328–341. URL: https://ui.adsabs.harvard.edu/abs/1978bllo.conf..328B
- Blandford, R. D. and Znajek, R. L. (May 1977). "Electromagnetic extraction of energy from Kerr black holes." In: MNRAS 179, pp. 433–456. URL: https://ui.adsabs.harvard.edu/abs/1977MNRAS.179..433B
- Blumenthal, G. R. and Gould, R. J. (Jan. 1970). "Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases". In: Reviews of Modern Physics 42.2, pp. 237–271. URL: https://ui.adsabs.harvard.edu/abs/1970RvMP...42..237B
- Boettcher, M., Harris, D. E. and Krawczynski, H. (2012). "Relativistic Jets from Active Galactic Nuclei". URL: https://ui.adsabs.harvard.edu/abs/2012rjag.book.....B
- Bosco, F. et al. (Sept. 2021). "Spatially Resolving the Kinematics of the ≲100 µas Quasar Broad-line Region Using Spectroastrometry. II. The First Tentative Detection in a Luminous Quasar at z = 2.3". In: ApJ 919.1, 31, p. 31. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...919...31B
- Böttcher, M. and Dermer, C. D. (Jan. 2002). "An Evolutionary Scenario for Blazar Unification". In: ApJ 564.1, pp. 86–91. URL: https://ui.adsabs.harvard.edu/abs/2002ApJ...564...86B
- Böttcher, M. et al. (May 2013). "Leptonic and Hadronic Modeling of Fermi-detected Blazars". In: ApJ 768.1, 54, p. 54. URL: https://ui.adsabs.harvard.edu/abs/2013ApJ...768...54B
- Böttcher, M. and Els, P. (Apr. 2016). "Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars". In: ApJ 821.2, 102, p. 102. URL: https://ui.adsabs.harvard.edu/abs/2016ApJ...821..102B
- Boyer, R. H. and Lindquist, R. W. (Feb. 1967). "Maximal Analytic Extension of the Kerr Metric". In: Journal of Mathematical Physics 8.2, pp. 265–281. URL: https://ui.adsabs.harvard.edu/abs/1967JMP.....8..265B
- Brandenburg, A. et al. (June 1995). "Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow". In: ApJ 446, p. 741. URL: https://ui.adsabs.harvard.edu/abs/1995ApJ...446..741B
- Britto, R. J. G., Razzaque, S. and Lott, B. (Feb. 2015). "Spectral Studies of Flaring FSRQs at GeV Energies Using Pass 8 Fermi-LAT Data". In: arXiv e-prints, arXiv:1502.07624. URL: https://ui.adsabs.harvard.edu/abs/2015arXiv150207624B
- Broderick, A. E. and Tchekhovskoy, A. (Aug. 2015). "Horizon-scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87". In: ApJ 809.1, 97, p. 97. URL: https://ui.adsabs.harvard.edu/abs/2015ApJ...809...97B
- Burtscher, L. et al. (Oct. 2013). "A diversity of dusty AGN tori. Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies". In: A&A 558, A149, A149. URL: https://ui.adsabs.harvard.edu/abs/2013A&A...558A.149B
- Carter, B. (Feb. 1971). "Axisymmetric Black Hole Has Only Two Degrees of Freedom". In: Phys. Rev. Lett. 26.6, pp. 331–333. URL: https://ui.adsabs.harvard.edu/abs/1971PhRvL..26..331C
- Celotti, A., Padovani, P. and Ghisellini, G. (Apr. 1997). "Jets and accretion processes in active galactic nuclei: further clues". In: MNRAS 286.2, pp. 415–424. URL: https://ui.adsabs.harvard.edu/abs/1997MNRAS.286..415C
- Cerruti, M. et al. (July 2021). "The Blazar Hadronic Code Comparison Project". In: 37th International Cosmic Ray Conference (ICRC 2021). URL: https://ui.adsabs.harvard.edu/abs/2022icrc.confE.979C
- Chen, A. Y. and Yuan, Y. (June 2020). "Physics of Pair Producing Gaps in Black Hole Magnetospheres. II. General Relativity". In: ApJ 895.2, 121, p. 121. URL: https://ui.adsabs.harvard.edu/abs/2020ApJ...895..121C
- Chen, A. Y., Yuan, Y. and Yang, H. (Aug. 2018). "Physics of Pair Producing Gaps in Black Hole Magnetospheres". In: ApJ 863.2, L31, p. L31. URL: https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..31C
- Cheng, K. S., Ho, C. and Ruderman, M. (Jan. 1986). "Energetic Radiation from Rapidly Spinning Pulsars. II. VELA and Crab". In: ApJ 300, p. 522. URL: http://adsabs.harvard.edu/abs/1986ApJ...300..522C
- Collin, S. and Huré, J.-M. (June 2001). "Size-mass-luminosity relations in AGN and the role of the accretion disc". In: A&A 372, pp. 50–58. URL: https://ui.adsabs.harvard.edu/abs/2001A&A...372...50C
- Crinquand, B. et al. (Apr. 2020). "Multidimensional Simulations of Ergospheric Pair Discharges around Black Holes". In: Phys. Rev. Lett. 124.14, 145101, p. 145101. URL: https://ui.adsabs.harvard.edu/abs/2020PhRvL.124n5101C
- Curtis, H. D. (Jan. 1918). "Descriptions of 762 Nebulae and Clusters Photographed with the Crossley Reflector". In: Publications of Lick Observatory 13, pp. 9–42. URL: https://ui.adsabs.harvard.edu/abs/1918PLicO..13....9C
- Czerny, B. (Dec. 2019). "Modelling broad emission lines in active galactic nuclei". In: Open Astronomy 28.1, pp. 200–212. URL: https://ui.adsabs.harvard.edu/abs/2019OAst...28..200C
- Davidson, K. and Netzer, H. (Oct. 1979). "The emission lines of quasars and similar objects". In: Reviews of Modern Physics 51.4, pp. 715–766. URL: https://ui.adsabs.harvard.edu/abs/1979RvMP...51..715D
- de Jager, O. C. (Aug. 1999). "Central black hole mass estimates for Mkn 501 from shot noise-like X-Ray and TeV flares during 1997". In: 26th International Cosmic Ray Conference (ICRC26), Volume 3. Vol. 3. International Cosmic Ray Conference, p. 346. URL: https://ui.adsabs.harvard.edu/abs/1999ICRC....3..346D
- Decarli, R., Dotti, M. and Treves, A. (May 2011). "Geometry and inclination of the broad-line region in blazars". In: MNRAS 413.1, pp. 39–46. URL: https://ui.adsabs.harvard.edu/abs/2011MNRAS.413...39D
- Dere, K. P. et al. (Oct. 1997). "CHIANTI - an atomic database for emission lines". In: A&AS 125, pp. 149–173. URL: https://ui.adsabs.harvard.edu/abs/1997A&AS..125..149D
- Dermer, C. D., Schlickeiser, R. and Mastichiadis, A. (Mar. 1992). "High-energy gamma radiation from extragalactic radio sources." In: A&A 256, pp. L27–L30. URL: https://ui.adsabs.harvard.edu/abs/1992A&A...256L..27D
- Dermer, C. D. et al. (Feb. 2014). "Equipartition Gamma-Ray Blazars and the Location of the Gamma-Ray Emission Site in 3C 279". In: ApJ 782.2, 82, p. 82. URL: https://ui.adsabs.harvard.edu/abs/2014ApJ...782...82D
- Dermer, C. D. and Giebels, B. (June 2016). "Active galactic nuclei at gamma-ray energies". In: Comptes Rendus Physique 17.6, pp. 594–616. URL: https://ui.adsabs.harvard.edu/abs/2016CRPhy..17..594D
- Donea, A.-C. and Protheroe, R. J. (Jan. 2003). "Radiation fields of disk, BLR and torus in quasars and blazars: implications for γ-ray absorption". In: Astroparticle Physics 18.4, pp. 377–393. URL: https://ui.adsabs.harvard.edu/abs/2003APh....18..377D
- Dorner, D. et al. (Feb. 2015). "FACT - Monitoring Blazars at Very High Energies". In: arXiv e-prints, arXiv:1502.02582. URL: https://ui.adsabs.harvard.edu/abs/2015arXiv150202582D
- Esin, A. A., McClintock, J. E. and Narayan, R. (Nov. 1997). "Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991". In: ApJ 489.2, pp. 865–889. URL: https://ui.adsabs.harvard.edu/abs/1997ApJ...489..865E
- Event Horizon Telescope Collaboration et al. (Apr. 2019). "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole". In: ApJ 875.1, L1, p. L1. URL: https://ui.adsabs.harvard.edu/abs/2019ApJ...875L...1E
- Fabian, A. C. and Miniutti, G. (July 2005). "The X-ray spectra of accreting Kerr black holes". In: arXiv e-prints, astro-ph/0507409. URL: https://ui.adsabs.harvard.edu/abs/2005astro.ph..7409F
- Fanaroff, B. L. and Riley, J. M. (May 1974). "The morphology of extragalactic radio sources of high and low luminosity". In: MNRAS 167, 31P–36P. URL: https://ui.adsabs.harvard.edu/abs/1974MNRAS.167P..31F
- Ferland, G. J. et al. (Oct. 2017). "The 2017 Release Cloudy". In: Rev. Mexicana Astron. Astrofis. 53, pp. 385–438. URL: https://ui.adsabs.harvard.edu/abs/2017RMxAA..53..385F
- Fian, C. et al. (Sept. 2021). "Microlensing of the broad emission lines in 27 gravitationally lensed quasars. Broad line region structure and kinematics". In: A&A 653, A109, A109. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...653A.109F
- Finke, J. D. (Oct. 2016). "External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region". In: ApJ 830.2, 94, p. 94. URL: https://ui.adsabs.harvard.edu/abs/2016ApJ...830...94F
- Ford, A. L., Keenan, B. D. and Medvedev, M. V. (Sept. 2018). "Electron-positron cascade in magnetospheres of spinning black holes". In: Phys. Rev. D 98, 063016, p. 063016. URL: https://ui.adsabs.harvard.edu/abs/2018PhRvD..98f3016F
- Foschini, L. et al. (July 2013). "Fermi/LAT detection of extraordinary variability in the gamma-ray emission of the blazar PKS 1510-089". In: A&A 555, A138, A138. URL: https://ui.adsabs.harvard.edu/abs/2013A&A...555A.138F
- Foschini, L. (July 2017). "What we talk about when we talk about blazars?" In: Frontiers in Astronomy and Space Sciences 4, 6, p. 6. URL: https://ui.adsabs.harvard.edu/abs/2017FrASS...4....6F
- Fossati, G. et al. (Sept. 1998). "A unifying view of the spectral energy distributions of blazars". In: MNRAS 299.2, pp. 433–448. URL: https://ui.adsabs.harvard.edu/abs/1998MNRAS.299..433F
- Frank, J., King, A. and Raine, D. J. (2002). "Accretion Power in Astrophysics: Third Edition". URL: https://ui.adsabs.harvard.edu/abs/2002apa..book.....F
- Fromerth, M. J. and Melia, F. (Mar. 2001). "The Formation of Broad-Line Clouds in the Accretion Shocks of Active Galactic Nuclei". In: ApJ 549.1, pp. 205–214. URL: https://ui.adsabs.harvard.edu/abs/2001ApJ...549..205F
- Ghisellini, G., Maraschi, L. and Tavecchio, F. (June 2009). "The Fermi blazars' divide". In: MNRAS 396.1, pp. L105–L109. URL: https://ui.adsabs.harvard.edu/abs/2009MNRAS.396L.105G
- Ghisellini, G. and Tavecchio, F. (July 2008). "The blazar sequence: a new perspective". In: MNRAS 387.4, pp. 1669–1680. URL: https://ui.adsabs.harvard.edu/abs/2008MNRAS.387.1669G
- Ghisellini, G. et al. (Dec. 1998). "A theoretical unifying scheme for gamma-ray bright blazars". In: MNRAS 301.2, pp. 451–468. URL: https://ui.adsabs.harvard.edu/abs/1998MNRAS.301..451G
- Ghisellini, G. et al. (July 2011). "The transition between BL Lac objects and flat spectrum radio quasars". In: MNRAS 414.3, pp. 2674–2689. URL: https://ui.adsabs.harvard.edu/abs/2011MNRAS.414.2674G
- Ghisellini, G. et al. (Nov. 2014). "The power of relativistic jets is larger than the luminosity of their accretion disks". In: Nature 515.7527, pp. 376–378. URL: https://ui.adsabs.harvard.edu/abs/2014Natur.515..376G
- Ghisellini, G. et al. (July 2017). "The Fermi blazar sequence". In: MNRAS 469.1, pp. 255–266. URL: https://ui.adsabs.harvard.edu/abs/2017MNRAS.469..255G
- Ghisellini, G. (Jan. 2012). "Jetted Active Galactic Nuclei". In: International Journal of Modern Physics Conference Series. Vol. 8. International Journal of Modern Physics Conference Series, pp. 1–12. URL: https://ui.adsabs.harvard.edu/abs/2012IJMPS...8....1G
- Ghisellini, G. (2013). "Radiative Processes in High Energy Astrophysics". Vol. 873. Springer. URL: https://ui.adsabs.harvard.edu/abs/2013LNP...873.....G
- Giannios, D. (May 2013). "Reconnection-driven plasmoids in blazars: fast flares on a slow envelope". In: MNRAS 431.1, pp. 355–363. URL: https://ui.adsabs.harvard.edu/abs/2013MNRAS.431..355G
- Giannios, D., Uzdensky, D. A. and Begelman, M. C. (Mar. 2010). "Fast TeV variability from misaligned minijets in the jet of M87". In: MNRAS 402.3, pp. 1649–1656. URL: https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.1649G
- Giommi, P. et al. (Mar. 2012). "A simplified view of blazars: clearing the fog around long-standing selection effects". In: MNRAS 420.4, pp. 2899–2911. URL: https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.2899G
- Giroletti, M. et al. (Jan. 2004). "Parsec-Scale Properties of Markarian 501". In: ApJ 600.1, pp. 127–140. URL: https://ui.adsabs.harvard.edu/abs/2004ApJ...600..127G
- Glawion, D. and Wierzcholska, A. (Aug. 2021). "Is PKS 0625-354 another variable TeV active galactic nucleus?" In: 37th International Cosmic Ray Conference (ICRC 2021). URL: https://ui.adsabs.harvard.edu/abs/2021arXiv210801331G
- Glawion, D. E. et al. (Jan. 2017). "Black hole lightning of IC 310 and the days after". In: 6th International Symposium on High Energy Gamma-Ray Astronomy. Vol. 1792. American Institute of Physics Conference Series, 050003, p. 050003. URL: https://ui.adsabs.harvard.edu/abs/2017AIPC.1792e0003G
- Goad, M. R., Korista, K. T. and Ruff, A. J. (Nov. 2012). "The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus". In: MNRAS 426.4, pp. 3086–3111. URL: https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.3086G
- Goad, M. and Koratkar, A. (Mar. 1998). "Broad Emission Line Variability as a Constraint upon the Physical Conditions within the Broad Emission Line Region of NGC 5548". In: ApJ 495.2, pp. 718–739. URL: https://ui.adsabs.harvard.edu/abs/1998ApJ...495..718G
- Gokus, A. et al. (May 2021). "The first GeV flare of the radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447". In: A&A 649, A77, A77. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...649A..77G
- Goldreich, P. and Julian, W. H. (Aug. 1969). "Pulsar Electrodynamics". In: ApJ 157, p. 869. URL: https://ui.adsabs.harvard.edu/abs/1969ApJ...157..869G
- Gould, R. J. (July 1979). "Compton and synchrotron processes in spherically-symmetric non-thermal sources." In: A&A 76, pp. 306–311. URL: https://ui.adsabs.harvard.edu/abs/1979A&A....76..306G
- Gravity Collaboration et al. (Apr. 2021). "The central parsec of NGC 3783: a rotating broad emission line region, asymmetric hot dust structure, and compact coronal line region". In: A&A 648, A117, A117. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...648A.117G
- H.E.S.S. Collaboration et al. (July 2019). "Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE γ-ray observations with H.E.S.S." In: A&A 627, A159, A159. URL: https://ui.adsabs.harvard.edu/abs/2019A&A...627A.159H
- Haardt, F., Maraschi, L. and Ghisellini, G. (Sept. 1994). "A Model for the X-Ray and Ultraviolet Emission from Seyfert Galaxies and Galactic Black Holes". In: ApJ 432, p. L95. URL: https://ui.adsabs.harvard.edu/abs/1994ApJ...432L..95H
- Harris, C. R. et al. (Sept. 2020). "Array programming with NumPy". In: Nature 585.7825, pp. 357–362. URL: https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H
- Hartman, R. C. et al. (Jan. 1992). "Detection of High-Energy Gamma Radiation from Quasar 3C 279 by the EGRET Telescope on the Compton Gamma Ray Observatory". In: ApJ 385, p. L1. URL: https://ui.adsabs.harvard.edu/abs/1992ApJ...385L...1H
- Harvey, A. L. W., Georganopoulos, M. and Meyer, E. T. (Oct. 2020). "Powerful extragalactic jets dissipate their kinetic energy far from the central black hole". In: Nature Communications 11, 5475, p. 5475. URL: https://ui.adsabs.harvard.edu/abs/2020NatCo..11.5475H
- Hayashida, M. et al. (July 2015). "Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint Fermi-LAT, NuSTAR, Swift, and Ground-Based Multiwavelength Observations". In: ApJ 807.1, 79, p. 79. URL: https://ui.adsabs.harvard.edu/abs/2015ApJ...807...79H
- Hirotani, K. (Jan. 2005). "High energy emission from pulsars: Outer gap scenario". In: Advances in Space Research 35, pp. 1085–1091. URL: https://ui.adsabs.harvard.edu/abs/2005AdSpR..35.1085H
- Hirotani, K. and Okamoto, I. (Apr. 1998). "Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole". In: ApJ 497.2, pp. 563–572. URL: https://ui.adsabs.harvard.edu/abs/1998ApJ...497..563H
- Hirotani, K. and Pu, H.-Y. (Feb. 2016). "Energetic Gamma Radiation from Rapidly Rotating Black Holes". In: ApJ 818, 50, p. 50. URL: https://ui.adsabs.harvard.edu/abs/2016ApJ...818...50H
- Hirotani, K. et al. (Dec. 2016). "Lepton Acceleration in the Vicinity of the Event Horizon: High-energy and Very-high-energy Emissions from Rotating Black Holes with Various Masses". In: ApJ 833.2, 142, p. 142. URL: https://ui.adsabs.harvard.edu/abs/2016ApJ...833..142H
- Hirotani, K. et al. (Aug. 2017). "Lepton Acceleration in the Vicinity of the Event Horizon: Very High Energy Emissions from Supermassive Black Holes". In: ApJ 845.1, 77, p. 77. URL: https://ui.adsabs.harvard.edu/abs/2017ApJ...845...77H
- Hirotani, K. et al. (Feb. 2021). "Two-dimensional Particle-in-cell Simulations of Axisymmetric Black Hole Magnetospheres". In: ApJ 908.1, 88, p. 88. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...908...88H
- Hu, W. (Jan. 2022). Private communication via e-mail correspondence
- Hu, W. and Yan, D. (Dec. 2021). "On the narrow spectral feature at 3 TeV in the MAGIC spectrum of Mrk 501". In: MNRAS 508.3, pp. 4038–4046. URL: https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.4038H
- Hunter, J. D. (May 2007). "Matplotlib: A 2D Graphics Environment". In: Computing in Science and Engineering 9.3, pp. 90–95. URL: https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H
- IceCube Collaboration et al. (July 2018). "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A". In: Science 361, eaat1378, eaat1378. URL: https://ui.adsabs.harvard.edu/abs/2018Sci...361.1378I
- Israel, W. (Sept. 1968). "Event horizons in static electrovac space-times". In: Communications in Mathematical Physics 8.3, pp. 245–260. URL: https://ui.adsabs.harvard.edu/abs/1968CMaPh...8..245I
- Jarvis, M. J. and McLure, R. J. (June 2006). "Orientation dependency of broad-line widths in quasars and consequences for black hole mass estimation". In: MNRAS 369.1, pp. 182–188. URL: https://ui.adsabs.harvard.edu/abs/2006MNRAS.369..182J
- Jones, F. C. (Mar. 1968). "Calculated Spectrum of Inverse-Compton-Scattered Photons". In: Physical Review 167, pp. 1159–1169. URL: https://ui.adsabs.harvard.edu/abs/1968PhRv..167.1159J
- Kaspi, S. et al. (Apr. 2007). "Reverberation Mapping of High-Luminosity Quasars: First Results". In: ApJ 659.2, pp. 997–1007. URL: https://ui.adsabs.harvard.edu/abs/2007ApJ...659..997K
- Kaspi, S. et al. (July 2021). "Taking a Long Look: A Two-decade Reverberation Mapping Study of High-luminosity Quasars". In: ApJ 915.2, 129, p. 129. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...915..129K
- Kato, S., Fukue, J. and Mineshige, S. (2008). "Black-Hole Accretion Disks — Towards a New Paradigm —". URL: https://ui.adsabs.harvard.edu/abs/2008bhad.book.....K
- Katsoulakos, G. and Rieger, F. M. (June 2020). "Gap-type Particle Acceleration in the Magnetospheres of Rotating Supermassive Black Holes". In: ApJ 895.2, 99, p. 99. URL: https://ui.adsabs.harvard.edu/abs/2020ApJ...895...99K
- Katsoulakos, G., Rieger, F. M. and Reville, B. (Aug. 2020). "Constraining Cosmic-Ray Acceleration in the Magnetospheric Gaps of Sgr A*". In: ApJ 899.1, L7, p. L7. URL: https://ui.adsabs.harvard.edu/abs/2020ApJ...899L...7K
- Kerr, R. P. (Sept. 1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". In: Phys. Rev. Lett. 11.5, pp. 237–238. URL: https://ui.adsabs.harvard.edu/abs/1963PhRvL..11..237K
- Kilerci Eser, E. et al. (Mar. 2015). "On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei". In: ApJ 801.1, 8, p. 8. URL: https://ui.adsabs.harvard.edu/abs/2015ApJ...801....8K
- Kim, J.-Y. et al. (Aug. 2020). "Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution". In: A&A 640, A69, A69. URL: https://ui.adsabs.harvard.edu/abs/2020A&A...640A..69K
- King, A. R. and Pringle, J. E. (Sept. 2021). "Can the Blandford-Znajek Mechanism Power Steady Jets?" In: ApJ 918.1, L22, p. L22. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...918L..22K
- Kisaka, S., Levinson, A. and Toma, K. (Oct. 2020). "Comprehensive Analysis of Magnetospheric Gaps around Kerr Black Holes Using 1D GRPIC Simulations". In: ApJ 902.1, 80, p. 80. URL: https://ui.adsabs.harvard.edu/abs/2020ApJ...902...80K
- Konigl, A. and Kartje, J. F. (Oct. 1994). "Disk-driven Hydromagnetic Winds as a Key Ingredient of Active Galactic Nuclei Unification Schemes". In: ApJ 434, p. 446. URL: https://ui.adsabs.harvard.edu/abs/1994ApJ...434..446K
- Krauß, F. et al. (June 2014). "TANAMI blazars in the IceCube PeV-neutrino fields". In: A&A 566, L7, p. L7. URL: https://ui.adsabs.harvard.edu/abs/2014A&A...566L...7K.
- Landi, E. et al. (Jan. 2012). "CHIANTI — An Atomic Database for Emission Lines. XII. Version 7 of the Database". In: ApJ 744.2, 99, p. 99. URL: https://ui.adsabs.harvard.edu/abs/2012ApJ...744...99L
- Lawrence, A. (Oct. 1991). "The relative frequency of broad-lined and narrow-lined active galactic nuclei: implications for unified schemes." In: MNRAS 252, p. 586. URL: https://ui.adsabs.harvard.edu/abs/1991MNRAS.252..586L
- Lei, M. and Wang, J. (Aug. 2015). "Location of gamma-ray flaring region in quasar 4C +21.35". In: PASJ 67.4, 79, p. 79. URL: https://ui.adsabs.harvard.edu/abs/2015PASJ...67...79L
- Levinson, A. (July 2000). "Particle Acceleration and Curvature TeV Emission by Rotating, Supermassive Black Holes". In: Phys. Rev. Lett. 85.5, pp. 912–915. URL: https://ui.adsabs.harvard.edu/abs/2000PhRvL..85..912L
- Levinson, A. and Cerutti, B. (Sept. 2018). "Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole". In: A&A 616, A184, A184. URL: https://ui.adsabs.harvard.edu/abs/2018A&A...616A.184L
- Levinson, A. and Rieger, F. (Apr. 2011). "Variable TeV Emission as a Manifestation of Jet Formation in M87?" In: ApJ 730.2, 123, p. 123. URL: https://ui.adsabs.harvard.edu/abs/2011ApJ...730..123L
- Levinson, A. and Segev, N. (Dec. 2017). "Existence of steady gap solutions in rotating black hole magnetospheres". In: Phys. Rev. D 96.12, 123006, p. 123006. URL: https://ui.adsabs.harvard.edu/abs/2017PhRvD..96l3006L
- Liao, N.-h. (July 2018). "Fast γ-ray Variability: A Common Feature and Powerful Probe for Jetted AGNs". In: Galaxies 6, p. 68. URL: http://adsabs.harvard.edu/abs/2018Galax...6...68L
- Liodakis, I. (Aug. 2018). "Toy model for the acceleration of blazar jets". In: A&A 616, A93, A93. URL: https://ui.adsabs.harvard.edu/abs/2018A&A...616A..93L
- Liska, M., Tchekhovskoy, A. and Quataert, E. (May 2020). "Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field". In: MNRAS 494.3, pp. 3656–3662. URL: https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.3656L
- Liu, H. T. and Bai, J. M. (Dec. 2006). "Absorption of 10-200 GeV Gamma Rays by Radiation from Broad-Line Regions in Blazars". In: ApJ 653.2, pp. 1089–1097. URL: https://ui.adsabs.harvard.edu/abs/2006ApJ...653.1089L
- Longair, M. S. (2011). "High Energy Astrophysics". URL: https://ui.adsabs.harvard.edu/abs/2011hea..book.....L
- Lovelace, R. V. E. (Aug. 1976). "Dynamo model of double radio sources". In: Nature 262.5570, pp. 649–652. URL: https://ui.adsabs.harvard.edu/abs/1976Natur.262..649L
- Lovelace, R. V. E., MacAuslan, J. and Burns, M. (Nov. 1979). "Particle acceleration in double radio sources". In: Particle Acceleration Mechanisms in Astrophysics. Ed. by J. Arons, C. McKee and C. Max. Vol. 56. American Institute of Physics Conference Series, pp. 399–415. URL: https://ui.adsabs.harvard.edu/abs/1979AIPC...56..399L
- Lynden-Bell, D. (Aug. 1969). "Galactic Nuclei as Collapsed Old Quasars". In: Nature 223.5207, pp. 690–694. URL: https://ui.adsabs.harvard.edu/abs/1969Natur.223..690L
- MacLachlan, G. A. et al. (June 2013). "Minimum variability time-scales of long and short GRBs". In: MNRAS 432.2, pp. 857–865. URL: https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..857M
- MAGIC Collaboration et al. (June 2008). "Very-High-Energy gamma rays from a Distant Quasar: How Transparent Is the Universe?" In: Science 320.5884, p. 1752. URL: https://ui.adsabs.harvard.edu/abs/2008Sci...320.1752M
- MAGIC Collaboration et al. (Sept. 2018). "Gamma-ray flaring activity of NGC1275 in 2016-2017 measured by MAGIC". In: A&A 617, A91, A91. URL: https://ui.adsabs.harvard.edu/abs/2018A&A...617A..91M
- MAGIC Collaboration et al. (May 2020). "Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity". In: A&A 637, A86, A86. URL: https://ui.adsabs.harvard.edu/abs/2020A&A...637A..86M
- MAGIC Collaboration et al. (Nov. 2021). "Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017". In: A&A 655, A89, A89. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...655A..89M
- Mahadevan, R. (Mar. 1997). "Scaling Laws for Advection-dominated Flows: Applications to Low-Luminosity Galactic Nuclei". In: ApJ 477, pp. 585–601. URL: https://ui.adsabs.harvard.edu/abs/1997ApJ...477..585M
- Mannheim, K. (Mar. 1993). "The proton blazar." In: A&A 269, pp. 67–76. URL: https://ui.adsabs.harvard.edu/abs/1993A&A...269...67M
- Mannheim, K. and Biermann, P. L. (Jan. 1992). "Gamma-ray flaring of 3C 279: a proton-initiated cascade in the jet?" In: A&A 253, pp. L21–L24. URL: https://ui.adsabs.harvard.edu/abs/1992A&A...253L..21M
- Mao, P. et al. (June 2016). "A Comprehensive Statistical Description of Radio-through-Gamma-Ray Spectral Energy Distributions of All Known Blazars". In: ApJS 224.2, 26, p. 26. URL: https://ui.adsabs.harvard.edu/abs/2016ApJS..224...26M
- Maraschi, L., Ghisellini, G. and Celotti, A. (Sept. 1992). "A Jet Model for the Gamma-Ray–emitting Blazar 3C 279". In: ApJ 397, p. L5. URL: https://ui.adsabs.harvard.edu/abs/1992ApJ...397L...5M
- Marcowith, A., Henri, G. and Pelletier, G. (Nov. 1995). "Gamma-ray emission of blazars by a relativistic electron-positron beam". In: MNRAS 277.2, pp. 681–699. URL: https://ui.adsabs.harvard.edu/abs/1995MNRAS.277..681M
- Markowitz, A. G., Krumpe, M. and Nikutta, R. (Apr. 2014). "First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN". In: MNRAS 439.2, pp. 1403–1458. URL: https://ui.adsabs.harvard.edu/abs/2014MNRAS.439.1403M
- Marziani, P. et al. (May 1996). "Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei". In: ApJS 104, p. 37. URL: https://ui.adsabs.harvard.edu/abs/1996ApJS..104...37M
- Mastichiadis, A. and Kirk, J. G. (Mar. 1995). "Self-consistent particle acceleration in active galactic nuclei." In: A&A 295, p. 613. URL: https://ui.adsabs.harvard.edu/abs/1995A&A...295..613M
- Matthews, J. H., Bell, A. R. and Blundell, K. M. (Sept. 2020). "Particle acceleration in astrophysical jets". In: New A Rev. 89, 101543, p. 101543. URL: https://ui.adsabs.harvard.edu/abs/2020NewAR..8901543M
- Meyer, M., Petropoulou, M. and Christie, I. M. (May 2021). "The Observability of Plasmoid-powered γ-Ray Flares with the Fermi Large Area Telescope". In: ApJ 912.1, 40, p. 40. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...912...40M
- Meyer, M., Scargle, J. D. and Blandford, R. D. (May 2019). "Characterizing the Gamma-Ray Variability of the Brightest Flat Spectrum Radio Quasars Observed with the Fermi LAT". In: ApJ 877.1, 39, p. 39. URL: https://ui.adsabs.harvard.edu/abs/2019ApJ...877...39M
- Michell, J. (Jan. 1784). "On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose. By the Rev. John Michell, B. D. F. R. S. In a Letter to Henry Cavendish, Esq. F. R. S. and A. S." In: Philosophical Transactions of the Royal Society of London Series I 74, pp. 35–57. URL: https://ui.adsabs.harvard.edu/abs/1784RSPT...74...35M
- Millman, K. J. and Aivazis, M. (Mar. 2011). "Python for Scientists and Engineers". In: Computing in Science and Engineering 13.2, pp. 9–12. URL: https://ui.adsabs.harvard.edu/abs/2011CSE....13b...9M
- Moles, M., Masegosa, J. and del Olmo, A. (Nov. 1987). "Two Elliptical Galaxies with Active Nuclei: NGC 6212 and MKN 501". In: AJ 94, p. 1143. URL: https://ui.adsabs.harvard.edu/abs/1987AJ.....94.1143M
- Mücke, A. and Protheroe, R. J. (Mar. 2001). "A proton synchrotron blazar model for flaring in Markarian 501". In: Astroparticle Physics 15.1, pp. 121–136. URL: https://ui.adsabs.harvard.edu/abs/2001APh....15..121M
- Narayan, R., Mahadevan, R. and Quataert, E. (Jan. 1998). "Advection-dominated accretion around black holes". In: Theory of Black Hole Accretion Disks. Ed. by M. A. Abramowicz, G. Björnsson and J. E. Pringle, pp. 148–182. URL: https://ui.adsabs.harvard.edu/abs/1998tbha.conf..148N
- Narayan, R. and Yi, I. (June 1994). "Advection-dominated Accretion: A Self-similar Solution". In: ApJ 428, p. L13. URL: https://ui.adsabs.harvard.edu/abs/1994ApJ...428L..13N
- Narayan, R. and Yi, I. (Oct. 1995). "Advection-dominated Accretion: Underfed Black Holes and Neutron Stars". In: ApJ 452, p. 710. URL: https://ui.adsabs.harvard.edu/abs/1995ApJ...452..710N
- Netzer, H. (Jan. 1990). "AGN emission lines." In: Active Galactic Nuclei. Ed. by R. D. Blandford et al., pp. 57–160. URL: https://ui.adsabs.harvard.edu/abs/1990agn..conf...57N
- Novikov, I. D. and Thorne, K. S. (Jan. 1973). "Astrophysics of black holes." In: Black Holes (Les Astres Occlus), pp. 343–450. URL: https://ui.adsabs.harvard.edu/abs/1973blho.conf..343N
- Oliphant, T. E. (Jan. 2007). "Python for Scientific Computing". In: Computing in Science and Engineering 9.3, pp. 10–20. URL: https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..10O
- Oliphant, T. E. (2015). "Guide to NumPy. 2nd". North Charleston, SC, USA: CreateSpace Independent Publishing Platform. ISBN: 151730007X
- Onken, C. A. et al. (Aug. 2020). "A thirty-four billion solar mass black hole in SMSS J2157-3602, the most luminous known quasar". In: MNRAS 496.2, pp. 2309–2314. URL: https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.2309O
- Padovani, P. (Aug. 2017). "On the two main classes of active galactic nuclei". In: Nature Astronomy 1, 0194, p. 0194. URL: https://ui.adsabs.harvard.edu/abs/2017NatAs...1E.194P
- Patiño-Álvarez, V. M. et al. (Oct. 2019). "Is there a non-stationary γ-ray emission zone 42 pc from the 3C 279 core?" In: A&A 630, A56, A56. URL: https://ui.adsabs.harvard.edu/abs/2019A&A...630A..56P
- Penrose, R. (Jan. 1969). "Gravitational Collapse: the Role of General Relativity". In: Nuovo Cimento Rivista Serie 1, p. 252. URL: https://ui.adsabs.harvard.edu/abs/1969NCimR...1..252P
- Peterson, B. M. (2006). "The Broad-Line Region in Active Galactic Nuclei". In: Physics of Active Galactic Nuclei at all Scales. Ed. by D. Alloin. Vol. 693, p. 77. URL: https://ui.adsabs.harvard.edu/abs/2006LNP...693...77P
- Peterson, B. M. et al. (Oct. 2005). "Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-based Measurement of the Black Hole Mass". In: ApJ 632.2, pp. 799–808. URL: https://ui.adsabs.harvard.edu/abs/2005ApJ...632..799P
- Petropoulou, M., Giannios, D. and Sironi, L. (Nov. 2016). "Blazar flares powered by plasmoids in relativistic reconnection". In: MNRAS 462.3, pp. 3325–3343. URL: https://ui.adsabs.harvard.edu/abs/2016MNRAS.462.3325P
- Pian, E., Falomo, R. and Treves, A. (Aug. 2005). "Hubble Space Telescope ultraviolet spectroscopy of blazars: emission-line properties and black hole masses". In: MNRAS 361.3, pp. 919–926. URL: https://ui.adsabs.harvard.edu/abs/2005MNRAS.361..919P
- Pittori, C. et al. (Apr. 2018). "The Bright γ-ray Flare of 3C 279 in 2015 June: AGILE Detection and Multifrequency Follow-up Observations". In: ApJ 856.2, 99, p. 99. URL: https://ui.adsabs.harvard.edu/abs/2018ApJ...856...99P
- Portegies Zwart, S. (Sept. 2020). "The ecological impact of high-performance computing in astrophysics". In: Nature Astronomy 4, pp. 819–822. URL: https://ui.adsabs.harvard.edu/abs/2020NatAs...4..819P
- Poutanen, J. and Stern, B. (July 2010). "GeV Breaks in Blazars as a Result of Gamma-ray Absorption Within the Broad-line Region". In: ApJ 717.2, pp. L118–L121. URL: https://ui.adsabs.harvard.edu/abs/2010ApJ...717L.118P
- Ptitsyna, K. and Neronov, A. (Aug. 2016). "Particle acceleration in the vacuum gaps in black hole magnetospheres". In: A&A 593, A8, A8. URL: https://ui.adsabs.harvard.edu/abs/2016A&A...593A...8P
- Punch, M. et al. (Aug. 1992). "Detection of TeV photons from the active galaxy Markarian 421". In: Nature 358.6386, pp. 477–478. URL: https://ui.adsabs.harvard.edu/abs/1992Natur.358..477P
- Quinn, J. et al. (Jan. 1996). "Detection of Gamma Rays with E > 300 GeV from Markarian 501". In: ApJ 456, p. L83. URL: https://ui.adsabs.harvard.edu/abs/1996ApJ...456L..83Q
- Rani, B. et al. (May 2018). "Exploring the Connection between Parsec-scale Jet Activity and Broadband Outbursts in 3C 279". In: ApJ 858.2, 80, p. 80. URL: https://ui.adsabs.harvard.edu/abs/2018ApJ...858...80R
- Reimer, A. (Aug. 2007). "The Redshift Dependence of Gamma-Ray Absorption in the Environments of Strong-Line AGNs". In: ApJ 665.2, pp. 1023–1029. URL: https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1023R
- Rieger, F. M. and Mannheim, K. (Jan. 2003). "On the central black hole mass in Mkn 501". In: A&A 397, pp. 121–125. URL: https://ui.adsabs.harvard.edu/abs/2003A&A...397..121R
- Rieger, F. (Jan. 2019). "Gamma-Ray Astrophysics in the Time Domain". In: Galaxies 7.1, p. 28. URL: https://ui.adsabs.harvard.edu/abs/2019Galax...7...28R
- Rieger, F. M. (Jan. 2017). "Gamma-rays from non-blazar AGN". In: 6th International Symposium on High Energy Gamma-Ray Astronomy. Vol. 1792. American Institute of Physics Conference Series, 020008, p. 020008. URL: https://ui.adsabs.harvard.edu/abs/2017AIPC.1792b0008R
- Romero, G. and Gutiérrez, E. (July 2020). "The Origin of Matter at the Base of Relativistic Jets in Active Galactic Nuclei". In: Universe 6.7, p. 99. URL: https://ui.adsabs.harvard.edu/abs/2020Univ....6...99R
- Roos, N. (Jan. 1992). "Gas Clouds from Tidally Disrupted Stars in Active Galactic Nuclei". In: ApJ 385, p. 108. URL: https://ui.adsabs.harvard.edu/abs/1992ApJ...385..108R
- Rybicki, G. B. and Lightman, A. P. (1986). "Radiative Processes in Astrophysics". URL: https://ui.adsabs.harvard.edu/abs/1986rpa..book.....R
- Sagan, C., Tyson, N. and Druyan, A. (2013). "Cosmos". The Random House Publishing Group. ISBN: 9780307800985
- Salpeter, E. E. (Aug. 1964). "Accretion of Interstellar Matter by Massive Objects." In: ApJ 140, pp. 796–800. URL: https://ui.adsabs.harvard.edu/abs/1964ApJ...140..796S
- Sandage, A. (May 1965). "The Existence of a Major New Constituent of the Universe: the Quasistellar Galaxies." In: ApJ 141, p. 1560. URL: https://ui.adsabs.harvard.edu/abs/1965ApJ...141.1560S
- Sbarrato, T. et al. (Sept. 2021). "Jetted radio-quiet quasars at z>5". In: A&A 655, p. A95. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...655A..95S
- Scheuer, P. A. G. and Readhead, A. C. S. (Jan. 1979). "Superluminally expanding radio sources and the radio-quiet QSOs". In: Nature 277, pp. 182–185. URL: https://ui.adsabs.harvard.edu/abs/1979Natur.277..182S
- Schmidt, M. (Mar. 1963). "3C 273: A Star-Like Object with Large Red-Shift". In: Nature 197.4872, p. 1040. URL: https://ui.adsabs.harvard.edu/abs/1963Natur.197.1040S
- Schweitzer, A., Günzler, C. and Zürcher, J. (2017). "Die Weltanschauung der Ehrfurcht vor dem Leben. Kulturphilosophie III: Dritter und vierter Teil". C.H.Beck. ISBN: 9783406704796
- Scoville, N. and Norman, C. (Sept. 1988). "Broad Emission Lines From the Mass-Loss Envelopes of Giant Stars in Active Galactic Nuclei". In: ApJ 332, p. 163. URL: https://ui.adsabs.harvard.edu/abs/1988ApJ...332..163S
- Seyfert, C. K. (Jan. 1943). "Nuclear Emission in Spiral Nebulae." In: ApJ 97, p. 28. URL: https://ui.adsabs.harvard.edu/abs/1943ApJ....97...28S
- Shah, Z. et al. (Apr. 2019). "Study on temporal and spectral behaviour of 3C 279 during 2018 January flare". In: MNRAS 484.3, pp. 3168–3179. URL: https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.3168S
- Shakura, N. I. and Sunyaev, R. A. (June 1973). "Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance." In: A&A 500, pp. 33–51. URL: https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S
- Shlosman, I., Vitello, P. A. and Shaviv, G. (July 1985). "Active galactic nuclei - Internal dynamics and formation of emission clouds". In: ApJ 294, pp. 96–105. URL: https://ui.adsabs.harvard.edu/abs/1985ApJ...294...96S
- Shukla, A. and Mannheim, K. (Aug. 2020). "Gamma-ray flares from relativistic magnetic reconnection in the jet of the quasar 3C 279". In: Nature Communications 11, 4176, p. 4176. URL: https://ui.adsabs.harvard.edu/abs/2020NatCo..11.4176S
- Shukla, A. et al. (Feb. 2018). "Short-timescale γ-Ray Variability in CTA 102". In: ApJ 854.2, L26, p. L26. URL: https://ui.adsabs.harvard.edu/abs/2018ApJ...854L..26S
- Song, Y. et al. (Oct. 2017). "Enhanced gamma radiation towards the rotation axis from the immediate vicinity of extremely rotating black holes". In: MNRAS 471.1, pp. L135–L139. URL: https://ui.adsabs.harvard.edu/abs/2017MNRAS.471L.135S
- Stern, B. E. and Poutanen, J. (Oct. 2011). "Variation of the γγ opacity by the He II Lyman continuum constrains the location of the γ-ray emission region in the blazar 3C 454.3". In: MNRAS 417.1, pp. L11–L15. URL: https://ui.adsabs.harvard.edu/abs/2011MNRAS.417L..11S
- Stern, B. E. and Poutanen, J. (Oct. 2014). "The Mystery of Spectral Breaks: Lyman Continuum Absorption by Photon-Photon Pair Production in the Fermi GeV Spectra of Bright Blazars". In: ApJ 794.1, 8, p. 8. URL: https://ui.adsabs.harvard.edu/abs/2014ApJ...794....8S
- Stocke, J. T., Danforth, C. W. and Perlman, E. S. (May 2011). "Broad Lyα Emission from Three Nearby BL Lacertae Objects". In: ApJ 732, 113, p. 113. URL: https://ui.adsabs.harvard.edu/abs/2011ApJ...732..113S
- Svensson, R. (July 1982). "Electron-Positron Pair Equilibria in Relativistic Plasmas". In: ApJ 258, p. 335. URL: https://ui.adsabs.harvard.edu/abs/1982ApJ...258..335S
- Svensson, R. (July 1987). "Non-thermal pair production in compact X-ray sources: first-order Compton cascades in soft radiation fields." In: MNRAS 227, pp. 403–451. URL: https://ui.adsabs.harvard.edu/abs/1987MNRAS.227..403S
- Swanenburg, B. N. et al. (Sept. 1978). "COS B observation of high-energy γ radiation from 3C273". In: Nature 275.5678, p. 298. URL: https://ui.adsabs.harvard.edu/abs/1978Natur.275..298S
- Tadhunter, C. (Aug. 2008). "An introduction to active galactic nuclei: Classification and unification". In: New A Rev. 52.6, pp. 227–239. URL: https://ui.adsabs.harvard.edu/abs/2008NewAR..52..227T
- Tan, C. et al. (June 2020). "The Physical Properties of Fermi-4LAC Flat Spectrum Radio Quasars". In: ApJS 248.2, 27, p. 27. URL: https://ui.adsabs.harvard.edu/abs/2020ApJS..248...27T
- Tavecchio, F. and Ghisellini, G. (Sept. 2012). "'Flat' broad line region and gamma-ray absorption in blazars". In: arXiv e-prints, arXiv:1209.2291. URL: https://ui.adsabs.harvard.edu/abs/2012arXiv1209.2291T
- Tavecchio, F., Maraschi, L. and Ghisellini, G. (Dec. 1998). "Constraints on the Physical Parameters of TeV Blazars". In: ApJ 509.2, pp. 608–619. URL: https://ui.adsabs.harvard.edu/abs/1998ApJ...509..608T
- Tavecchio, F. and Mazin, D. (Jan. 2009). "Intrinsic absorption in 3C 279 at GeV-TeV energies and consequences for estimates of the extragalactic background light". In: MNRAS 392.1, pp. L40–L44. URL: https://ui.adsabs.harvard.edu/abs/2009MNRAS.392L..40T
- Tchekhovskoy, A., Narayan, R. and McKinney, J. C. (Nov. 2011). "Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole". In: MNRAS 418.1, pp. L79–L83. URL: https://ui.adsabs.harvard.edu/abs/2011MNRAS.418L..79T
- Telfer, R. C. et al. (Feb. 2002). "The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasistellar Objects". In: ApJ 565.2, pp. 773–785. URL: https://ui.adsabs.harvard.edu/abs/2002ApJ...565..773T
- The Nobel Committee for Physics (2021a). "Scientific Background on the Nobel Prize in Physics 2019 – PHYSICAL COSMOLOGY AND AN EXOPLANET ORBITING A SOLAR-TYPE STAR. Advanced information". NobelPrize.org. Nobel Prize Outreach AB 2021. URL: https://www.nobelprize.org/prizes/physics/2019/advanced-information/
- The Nobel Committee for Physics (2021b). "Scientific Background on the Nobel Prize in Physics 2020 – THEORETICAL FOUNDTION FOR BLACK HOLES AND THE SUPERMASSIVE COMPACT OBJECT AT THE GALACTIC CENTRE. Advanced information". NobelPrize.org. Nobel Prize Outreach AB 2021. URL: https://www.nobelprize.org/prizes/physics/2020/advanced-information/
- Thorne, K. S. (July 1974). "Disk-Accretion onto a Black Hole. II. Evolution of the Hole". In: ApJ 191, pp. 507–520. URL: https://ui.adsabs.harvard.edu/abs/1974ApJ...191..507T
- Tursunov, A. et al. (May 2020). "Supermassive Black Holes as Possible Sources of Ultrahigh-energy Cosmic Rays". In: ApJ 895.1, 14, p. 14. URL: https://ui.adsabs.harvard.edu/abs/2020ApJ...895...14T
- Urry, C. M. and Padovani, P. (Sept. 1995). "Unified Schemes for Radio-Loud Active Galactic Nuclei". In: PASP 107, p. 803. URL: https://ui.adsabs.harvard.edu/abs/1995PASP..107..803U
- Véron-Cetty, M.-P. and Véron, P. (July 2010). "A catalogue of quasars and active nuclei: 13th edition". In: A&A 518, A10, A10. URL: https://ui.adsabs.harvard.edu/abs/2010A&A...518A..10V
- Vietri, G. et al. (Dec. 2020). "SUPER. III. Broad line region properties of AGNs at z ∼ 2". In: A&A 644, A175, A175. URL: https://ui.adsabs.harvard.edu/abs/2020A&A...644A.175V
- Viganò, D. et al. (Feb. 2015). "Compact formulae, dynamics and radiation of charged particles under synchro-curvature losses". In: MNRAS 447.2, pp. 1164–1172. URL: https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.1164V
- Vilkoviskij, E. Y. and Czerny, B. (June 2002). "The role of the central stellar cluster in active galactic nuclei. I. Semi-analytical model". In: A&A 387, pp. 804–817. URL: https://ui.adsabs.harvard.edu/abs/2002A&A...387..804V
- Vincent, S. and Lebohec, S. (Dec. 2010). "Monte Carlo simulation of electromagnetic cascades in black hole magnetosphere". In: MNRAS 409.3, pp. 1183–1194. URL: https://ui.adsabs.harvard.edu/abs/2010MNRAS.409.1183V
- Virtanen, P. et al. (2020). "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: Nature Methods 17, pp. 261–272. URL: https://rdcu.be/b08Wh
- Vuillaume, T., Henri, G. and Petrucci, P.-O. (Dec. 2018). "A stratified jet model for AGN emission in the two-flow paradigm". In: A&A 620, A41, A41. URL: https://ui.adsabs.harvard.edu/abs/2018A&A...620A..41V
- Wagner, S. M. et al. (Oct. 2021). "Statistical properties of flux variations in blazar light curves at GeV and TeV energies". In: 37th International Cosmic Ray Conference (ICRC 2021). URL: https://ui.adsabs.harvard.edu/abs/2022icrc.confE.868W/
- Wakely, S. P. and Horan, D. (Jan. 2008). "TeVCat: An online catalog for Very High Energy Gamma-Ray Astronomy". In: International Cosmic Ray Conference. Vol. 3. International Cosmic Ray Conference, pp. 1341–1344. URL: https://ui.adsabs.harvard.edu/abs/2008ICRC....3.1341W
- Wald, R. M. (Sept. 1974). "Black hole in a uniform magnetic field". In: Phys. Rev. D 10.6, pp. 1680–1685. URL: https://ui.adsabs.harvard.edu/abs/1974PhRvD..10.1680W
- Wendel, C. (2013). "Bestimmung des hochenergetischen Spektrums des Crab-Pulsars anhand eines Outer Gap-Modells". Diplomarbeit. Julius-Maximilians-Universität Würzburg. URL: https://doi.org/10.25972/OPUS-25719
- Wendel, C., Shukla, A. and Mannheim, K. (Aug. 2021). "Pair Cascades at the Edge of the Broad-line Region Shaping the Gamma-Ray Spectrum of 3C 279". In: ApJ 917.1, 32, p. 32. URL: https://ui.adsabs.harvard.edu/abs/2021ApJ...917...32W
- Wendel, C. et al. (Jan. 2017). "Simulating electromagnetic cascades in magnetospheres of active galactic nuclei". In: 6th International Symposium on High Energy Gamma-Ray Astronomy. Vol. 1792. American Institute of Physics Conference Series, 050026, p. 050026. URL: https://ui.adsabs.harvard.edu/abs/2017AIPC.1792e0026W
- Wendel, C. et al. (Aug. 2021). "Gamma-ray signatures from pair cascades in recombination-line radiation fields". In: 37th International Cosmic Ray Conference (ICRC 2021). URL: https://ui.adsabs.harvard.edu/abs/2022icrc.confE.911W
- Wendel, C. et al. (Feb. 2021). "Electron-beam interaction with emission-line clouds in blazars". In: A&A 646, A115, A115. URL: https://ui.adsabs.harvard.edu/abs/2021A&A...646A.115W
- Wilms, J., Allen, A. and McCray, R. (Oct. 2000). "On the Absorption of X-Rays in the Interstellar Medium". In: ApJ 542, pp. 914–924. URL: http://adsabs.harvard.edu/abs/2000ApJ...542..914W
- Woltjer, L. (July 1959). "Emission Nuclei in Galaxies." In: ApJ 130, p. 38. URL: https://ui.adsabs.harvard.edu/abs/1959ApJ...130...38W
- Zajaček, M. and Tursunov, A. (Dec. 2019). "The Electric Charge of Black Holes: Is It Really Always Negligible". In: The Observatory 139, pp. 231–236. URL: https://ui.adsabs.harvard.edu/abs/2019Obs...139..231Z
- Zajaček, M. et al. (Nov. 2018). "On the charge of the Galactic centre black hole". In: MNRAS 480.4, pp. 4408–4423. URL: https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.4408Z
- Zdziarski, A. A. (Dec. 1988). "Saturated Pair-Photon Cascades on Isotropic Background Photons". In: ApJ 335, p. 786. URL: https://ui.adsabs.harvard.edu/abs/1988ApJ...335..786Z
- Zdziarski, A. A. and Svensson, R. (Sept. 1989). "Absorption of X-Rays and Gamma Rays at Cosmological Distances". In: ApJ 344, p. 551. URL: https://ui.adsabs.harvard.edu/abs/1989ApJ...344..551Z
- Zel'dovich, Y. B. (Sept. 1964). "The Fate of a Star and the Evolution of Gravitational Energy Upon Accretion". In: Soviet Physics Doklady 9, p. 195. URL: https://ui.adsabs.harvard.edu/abs/1964SPhD....9..195Z