Revealing Nanoscale Disorder in W / Co - Fe - B / MgO Ultrathin Films Using Domain-Wall Motion
Creators
- 1. Spin-Ion Technologies, 10 Boulevard Thomas Gobert, Palaiseau 91120, France and Université Paris-Saclay, 3 rue Juliot Curie, Gif-sur-Yvette 91190, France
- 2. Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
- 3. Spin-Ion Technologies, 10 Boulevard Thomas Gobert, Palaiseau 91120, France
- 4. Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, Palaiseau 91120, France
- 5. Laboratoire des Sciences des Procédés et des Matériaux, CNRS-UPR 3407, Université Sorbonne Paris Nord, Villetaneuse 93430, France
- 6. Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, Salamanca 37008, Spain
- 7. Consiglio Nazionale delle Ricerche (CNR) – Institute for Microelectronics and Microsystems (IMM), Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza 20864, Italy
- 8. Spin-Ion Technologies, 10 Boulevard Thomas Gobert, Palaiseau 91120, France and Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, Palaiseau 91120, France
Description
Disorder in ultrathin magnetic films can significantly hinder domain-wall motion. One of the main issues on the path toward efficient domain-wall-based devices remains the characterization of the pinning landscape at the nanoscale. In this paper, we study domain-wall motion in W/Co-Fe-B/MgO thin films with perpendicular magnetic anisotropy crystallized by annealing at 400∘C and a process based on He+ irradiation combined with moderated temperatures. The magnetic properties are similar for the whole series of samples, while the magnetic domain-wall mobility is critically improved in the irradiated samples. By using an analytical model to extract the nanoscale pinning parameters, we reveal important variations in the disorder of the crystallized samples. This work offers an opportunity to selectively analyze the effects of disorder on the domain-wall dynamics, without the contribution of changes in the magnetic properties. Our results highlight the importance of evaluating the nanoscale pinning parameters of the material when designing devices based on domain-wall motion, which in return can be a powerful tool to probe the disorder in ultrathin magnetic films.
Files
GvdJ_PRA_2022.pdf
Files
(6.8 MB)
Name | Size | Download all |
---|---|---|
md5:4ebd97e56fe52b02abc9adf8b1c10d57
|
6.8 MB | Preview Download |