Published November 9, 2022 | Version v1
Dataset Open

Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data

  • 1. Nano-Science Center and Department of Chemistry, University of Copenhagen, Denmark
  • 2. School of Engineering and Materials Science, Queen Mary University of London, England
  • 3. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, England
  • 4. Scientific Computing Department, Rutherford Appleton Laboratory, England

Description

Files uploaded here are related to the paper titled "Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data". Here we investigate how generative adversarial networks can be used to match simulated- and experimental INS data.

Files

Files (29.8 GB)

Name Size Download all
md5:99a5b9d159b29f3598a04689379f8b67
3.4 GB Download
md5:5ba709c2240390fce0cfc575edc46e66
157.7 kB Download
md5:955703cb8df149d463a8912405c057fa
5.0 GB Download
md5:f637780135e612af55d2fa062910e7e0
1.5 MB Download
md5:a4153f24b40e48f488a43f77f8ff90a6
3.4 GB Download
md5:233ed53987bba231aaf57b174bef97db
424.2 kB Download
md5:36d1edc84ab9b408a0c16a0e08dfefa5
13.6 GB Download
md5:7357402d9c314e8fe722c3909231141c
4.4 GB Download
md5:9a2969fa9089c0b89c3ad439db3ac727
4.6 MB Download
md5:74e4945e6642a23a6181cbbfe14eed37
4.6 MB Download