There is a newer version of the record available.

Published November 2, 2022 | Version v1
Lesson Open

The Big Picture of Artificial Neural Networks

Description

This work presents the mathematical description outlining Artificial Neural Networks (ANN).

Files

The_Big_Picture_of_Artificial_Neural_Networks-standard.pdf

Files (290.6 kB)

Additional details

References

  • Bergmann, M., Moore, J., and Nelson, J. (2014). The Logic Book, Sixth Edition. McGraw-Hill, New York.
  • Bremaud, P. (2020). Probability Theory and Stochastic Processes. Springer Nature Switzerland, Cham.
  • Galton, F. (1989). Kinship and correlation (reprinted 1989). Statistical Science, 4 (2):80–86, DOI: 10.1214/ss/117701258.
  • Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
  • Judson, T. W. (2012). Abstract Algebra Theory and Applications. GNU Free Documentation License.
  • Marsden, J. and Weinstein, A. (1985). Calculus III. Springer.
  • Roman, S. (1992). Advanced Linear Algebra. Springer, New York, DOI: https://doi.org/10.1007/978-1-4757-2178-2.
  • Stoll, R. R. (1979). Set Theory and Logic. Dover, New York.
  • Yang, Z. R. and Yang, Z. (2014). Comprehensive Biomedical Physics. Elsevier, Karolinska Institute, Stockholm, Sweden.