Published September 21, 2021 | Version v1
Journal article Open

Basic Characteristics of Medically Important Alphaviruses (Togaviridae)

  • 1. Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Ankara, Türkiye.

Description

Özet

Uluslararası Virüs Sınıflandırma Komitesi (International Committee on Taxonomy of Viruses; ICTV) tarafından yayımlanan raporlara göre tür düzeyinde tanımlanan virüslerin sayısı son birkaç yılda 5.561’den (ICTV 2018b) 9.110’a (ICTV 2020) ulaşmıştır. Yeni geliştirilen moleküler biyoloji teknikleri ve yaygınlaşan saha çalışmaları yanında, virüslerin sadece enfeksiyöz patojenler olarak görüldüğü ve tanımlandığı geleneksel bakışın aksine virüslerin aşı çalışmaları veya genetik temelli tedaviler için biyolojik araçlar olarak da incelendiği günümüzün yeni anlayışı tanımlanan tür sayısındaki hızlı artışın önemli bir nedeni olmuştur. Son yıllarda viral enfeksiyonların epidemiyolojisindeki hızlı değişimler ve pandemik virüslerin küresel düzeydeki yıkıcı etkileri de bilim dünyasının salgın potansiyeli olan virüsler başta olmak üzere viroloji alanına karşı ilgisinin artmasına yol açmıştır. Tüm dünyaya yayılmış türleri ile insanlarda ve hayvanlarda salgınlara neden olan ve bazı türleri yüksek mortaliteli enfeksiyonlarla ilişkili olan alfaviruslar başlıca sivrisinekler aracılığı ile bulaştırılmaktadır. İnsanlarda başlıca artritojenik ve ensefalitik enfeksiyonlarla ilişkili olan alfavirusların bazı türleri ise insanlar için enfeksiyöz veya patojen değildir. Alfavirus cinsinin üyeleri arasında suda yaşayan böcek parazitler aracılığı ile balıklar ve foklar gibi deniz canlılarını enfekte eden türler olduğu gibi, sadece sivrisinekleri enfekte edebildikleri için deneysel çalışmalarda güvenli araçlar olarak öne çıkan türler de bulunmaktadır. Dahası rekombinan alfaviruslar ve alfaviral replikazlar replikatif mRNA’ların tasarlanmasında ve mRNA temelli aşıların geliştirilmesinde biyolojik araçlar olarak kullanılmaktadır. Ensefalit etkeni alfavirusların yaygın görülen türleri için başlıca atlarda kullanılmak üzere geliştirilen zayıflatılmış ve inaktive aşılar mevcut iken, farklı alfavirus türleri için insanlarda kullanılabilecek aşı ve antiviraller için geliştirme çalışmaları halen devam etmektedir. Alfavirusları, tarihçelerinden başlayarak biyolojik ve genomik özellikleri, konak dağılımları ve neden oldukları hastalıklar yönünden güncel literatür verilerine dayalı olarak inceleyen bu makale bu virüslerin temel virolojik karakteristiklerini özetlemektedir.

Abstract

According to the reports published by the International Committee on Taxonomy of Viruses (ICTV), the number of viruses defined at the species level has increased from 5,561 (ICTV 2018b) to 9,110 (ICTV 2020) in the last few years. In addition to newly developed molecular biology techniques and widespread field studies, today's new understanding in which viruses are also examined as biological tools for vaccine studies or genetic-based treatments, contrary to the traditional view that viruses are seen and defined only as infectious pathogens, has been an important reason for the rapid increase in the number of defined species. In recent years, the rapid changes in the epidemiology of viral infections and the devastating effects of pandemic viruses at the global level have led to an increase in the scientific world's interest in the field of virology, especially viruses with epidemic potential. Alphaviruses, which have spread all over the world, cause epidemics in humans and animals, and some species are associated with high-mortality infections, are mainly transmitted by mosquitoes. Alphaviruses are primarily associated with arthritogenic and encephalitic infections in humans, but some species are not infectious or pathogenic to humans. Among the members of the genus Alphavirus, there are species that infect sea creatures such as fish and seals through aquatic insect parasites, as well as species that stand out as safe tools in experimental studies because they can only infect mosquitoes. Moreover, recombinant alphaviruses and alphaviral replicases are used as biological tools in the design of replicative mRNAs and in the development of mRNA-based vaccines. While there are available attenuated and inactivated vaccines developed mainly for use in horses for common encephalitic alphavirus species, development studies are still ongoing for vaccines and antivirals that can be used in humans for different alphavirus types. This article, which examines alphaviruses starting from their history, based on current literature data in terms of biological and genomic features, host distribution and diseases they cause, summarizes the basic virological characteristics of these viruses.

Notes

Tıbbi Önemi Olan Alfavirusların (Togaviridae) Temel Karakteristikleri

Files

lms.2022.1.pdf

Files (2.0 MB)

Name Size Download all
md5:3cbcef302c1265cd569750ba9662217b
2.0 MB Preview Download

Additional details

References

  • 1. Dalrymple JM, Vogel SN, Teramoto AY, Russell PK. Antigenic components of group A arbovirus virions. J ‎Virol. 1973 Nov;12(5):1034-42. ‎
  • 2. International Committee on Taxonomy of Viruses, Washington, DC. Virus Taxonomy: 2020, October. ‎Available at: https://talk.ictvonline.org/taxonomy/ [Accessed September 16, 2021]. ‎
  • 3. Hubálek Z, Rudolf I, Nowotny N. Arboviruses pathogenic for domestic and wild animals. Adv Virus Res. ‎‎2014;89:201- 75. ‎
  • 4. Ryman KD, Klimstra WB. Host responses to alphavirus infection. Immunol Rev. 2008 Oct;225:27-45. ‎
  • 5. Rangel MV, Stapleford KA. Alphavirus Virulence Determinants. Pathogens. 2021 Aug 3;10(8):981. ‎
  • 6. Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and ‎Outbreaks. Microorganisms. 2020 Aug 1;8(8):1167. ‎
  • 7. Lwande OW, Obanda V, Bucht G, Mosomtai G, Otieno V, Ahlm C, et al. Global emergence of Alphaviruses ‎that cause arthritis in humans. Infect Ecol Epidemiol. 2015 Dec 18;5:29853. ‎
  • 8. Kurkela S, Rätti O, Huhtamo E, Uzcátegui NY, Nuorti JP, Laakkonen J, et al. Sindbis virus infection in ‎resident birds, migratory birds, and humans, Finland. Emerg Infect Dis. 2008 Jan;14(1):41-7. ‎
  • 9. Meyer KF, Haring CM, Howitt B. The Etiology of Epizootic Encephalomyelitis of Horses in the San Joaquin ‎Valley, 1930. Science. 1931 Aug 28;74(1913):227-8. ‎
  • 10. Kubes V, Ríos FA. The Causative Agent of Infectious Equine Encephalomyelitis in Venezuela. Science. ‎‎1939 Jul 7;90(2323):20-1. ‎
  • 11. Randall R, Mills JW. Fatal Encephalitis in Man due to the Venezuelan Virus of Equine Encephalomyelitis ‎in Trinidad. Science. 1944 Mar 17;99(2568):225-6. ‎
  • 12. Anderson CR, Downs WG, Wattley GH, Ahin NW, Reese AA. Mayaro virus: a new human disease agent. ‎II. Isolation from blood of patients in Trinidad, B.W.I. Am J Trop Med Hyg. 1957 Nov;6(6):1012-6. ‎
  • 13. Yağcı Çağlayık D, Uyar Y, Korukluoğlu G, Ertek M, Unal S. An imported Chikungunya fever case from New ‎Delhi, India to Ankara, Turkey: the first imported case of Turkey and review of the literature. Mikrobiyol Bul. ‎‎2012 Jan;46(1):122-8. ‎
  • 14. Tuittila MT, Santagati MG, Röyttä M, Määttä JA, Hinkkanen AE. Replicase complex genes of Semliki ‎Forest virus confer lethal neurovirulence. J Virol. 2000 May;74(10):4579-89. ‎
  • 15. Lindsay M, Johansen C, Broom AK, Smith DW, Mackenzie JS. Emergence of Barmah Forest virus in ‎Western Australia. Emerg Infect Dis. 1995 Jan-Mar;1(1):22-6. ‎
  • 16. International Committee on Taxonomy of Viruses, Washington, DC. ICTV reports; Togaviridae. Available ‎at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/togaviridae ‎‎[Accessed September 10, 2021]. ‎
  • 17. Lopes Marques CD, Ranzolin A, Cavalcanti NG, Branco Pinto Duarte AL. Arboviruses related with chronic ‎musculoskeletal symptoms. Best Pract Res Clin Rheumatol. 2020 Aug;34(4):101502. ‎
  • 18. Bessaud M, Peyrefitte CN, Pastorino BA, Gravier P, Tock F, Boete F, et al. O'nyong-nyong Virus, Chad. ‎Emerg Infect Dis. 2006 Aug;12(8):1248-50. ‎
  • 19. Schmaljohn AL, McClain D. Alphaviruses (Togaviridae) and Flaviviruses (Flaviviridae) (Chapter 54). In: ‎Baron S (ed), Medical Microbiology (4th edition). 1996, University of Texas Medical Branch at Galveston, ‎Texas. ‎
  • 20. Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and ‎assembly. Future Microbiol. 2009 Sep;4(7):837-56. ‎
  • 21. Brinton MA. Replication of Flaviviruses. In: Schlesinger S, Schlesinger MJ (eds), The Viruses: The ‎Togaviridae and Flaviviridae. 1986, Springer, Boston, Massachusetts. pp:327-74. ‎
  • 22. International Committee on Taxonomy of Viruses, Washington, DC. Virus Taxonomy: 2018b, July 2018. ‎Available at: https://talk.ictvonline.org/taxonomy/ [Accessed July 26, 2019]. ‎
  • 23. Lello LS, Utt A, Bartholomeeusen K, Wang S, Rausalu K, Kendall C, et al. Cross-utilisation of template ‎RNAs by alphavirus replicases. PLoS Pathog. 2020 Sep 4;16(9):e1008825. ‎
  • 24. Forrester NL, Wertheim JO, Dugan VG, Auguste AJ, Lin D, Adams AP, et al. Evolution and spread of ‎Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis. 2017 Aug ‎‎3;11(8):e0005693. ‎
  • ‎25. Hassing RJ, Leparc-Goffart I, Tolou H, van Doornum G, van Genderen PJ. Cross-reactivity of antibodies to ‎viruses belonging to the Semliki forest serocomplex. Euro Surveill. 2010 Jun 10;15(23):19588. ‎
  • ‎26. Toribio R, Díaz-López I, Berlanga JJ, Molina-Jiménez F, Majano P, Ventoso I. Naturally Occurring and ‎Engineered Alphaviruses Sensitive to Double-Stranded-RNA-Activated Protein Kinase Show Restricted ‎Translation in Mammalian Cells, Increased Sensitivity to Interferon, and Marked Oncotropism. J Virol. 2020 ‎Jan 17;94(3):e01630-19. ‎
  • ‎27. Mosimann ALP, de Siqueira MK, Ceole LF, Nunes Duarte Dos Santos C. A new Aura virus isolate in Brazil ‎shows segment duplication in the variable region of the nsP3 gene. Parasit Vectors. 2018 May 29;11(1):321. ‎
  • ‎28. Michie A, Ernst T, Chua IJ, Lindsay MDA, Neville PJ, Nicholson J, et al. Phylogenetic and Timescale Analysis ‎of Barmah Forest Virus as Inferred from Genome Sequence Analysis. Viruses. 2020 Jul 6;12(7):732. ‎
  • ‎29. Tesh RB, Gajdusek DC, Garruto RM, Cross JH, Rosen L. The distribution and prevalence of group A ‎arbovirus neutralizing antibodies among human populations in Southeast Asia and the Pacific islands. Am J ‎Trop Med Hyg. 1975 Jul;24(4):664-75. ‎
  • ‎30. Tschá MK, Suzukawa AA, Gräf T, Piancini LDS, da Silva AM, Faoro H, et al. Identification of a novel ‎alphavirus related to the encephalitis complexes circulating in southern Brazil. Emerg Microbes Infect. ‎‎2019;8(1):920-933. ‎
  • ‎31. Digoutte JP, Girault G. The protective properties in mice of tonate virus and two strains of cabassou virus ‎against neurovirulent everglades Venezuelan encephalitis virus. Ann Microbiol (Paris). 1976 ‎Oct;127B(3):429-37. ‎
  • ‎32. Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an ‎Emerging Viral Threat. Pathogens. 2021 Jul 31;10(8):973. ‎
  • ‎33. Smith DR, Schmaljohn CS, Badger C, Ostrowski K, Zeng X, Grimes SD, et al. Comparative pathology study ‎of Venezuelan, eastern, and western equine encephalitis viruses in non-human primates. Antiviral Res. 2020 ‎Oct;182:104875. ‎
  • ‎34. Tan L, Zhang Y, Wang X, Kim DY. A Productive Expression Platform Derived from Host-Restricted Eilat ‎Virus: Its Extensive Validation and Novel Strategy. Viruses. 2021 Apr 11;13(4):660. ‎
  • ‎35. Burkett-Cadena ND, Blosser EM, Loggins AA, Valente MC, Long MT, Campbell LP, et al. Invasive Burmese ‎pythons alter host use and virus infection in the vector of a zoonotic virus. Commun Biol. 2021 Jun ‎‎28;4(1):804. ‎
  • ‎36. Calisher CH, Murphy FA, France JK, Lazuick JS, Muth DJ, Steck F, et al. Everglades virus infection in man, ‎‎1975. South Med J. 1980 Nov;73(11):1548. ‎
  • ‎37. Allison AB, Stallknecht DE, Holmes EC. Evolutionary genetics and vector adaptation of recombinant ‎viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity ‎and host switching. Virology. 2015 Jan 1;474:154-62. ‎
  • ‎38. Zhai YG, Wang HY, Sun XH, Fu SH, Wang HQ, Attoui H, et al. Complete sequence characterization of ‎isolates of Getah virus (genus Alphavirus, family Togaviridae) from China. J Gen Virol. 2008 Jun;89(Pt ‎‎6):1446-1456. ‎
  • ‎39. Carrera JP, Cucunubá ZM, Neira K, Lambert B, Pittí Y, Liscano J, et al. Endemic and Epidemic Human ‎Alphavirus Infections in Eastern Panama: An Analysis of Population-Based Cross-Sectional Surveys. Am J ‎Trop Med Hyg. 2020 Dec;103(6):2429-2437. ‎
  • ‎40. Venter M. Assessing the zoonotic potential of arboviruses of African origin. Curr Opin Virol. 2018 ‎Feb;28:74-84. ‎
  • ‎41. Cardozo F, Konigheim B, Albrieu-Llinás G, Rivarola ME, Aguilar J, Rojas A, et al. Alphaviruses: Serological ‎Evidence of Human Infection in Paraguay (2012-2013). Vector Borne Zoonotic Dis. 2018 May;18(5):266-272. ‎
  • ‎42. Fernández Z, Moncayo AC, Carrara AS, Forattini OP, Weaver SC. Vector competence of rural and urban ‎strains of Aedes (Stegomyia) albopictus (Diptera: Culicidae) from São Paulo State, Brazil for IC, ID, and IF ‎subtypes of Venezuelan equine encephalitis virus. J Med Entomol. 2003 Jul;40(4):522-7. ‎
  • ‎43. Demucha Macias J, S'anchez Spindola I. Two Human Cases of Laboratory Infection with Mucambo Virus. ‎Am J Trop Med Hyg. 1965 May;14:475-8. ‎
  • ‎44. Moolla N, Viljoen N, Patharoo V, Grobbelaar A, Ismail A, Weyer J. Near-Complete Genome Sequence of ‎Ndumu Virus from Garissa, Kenya, 1997. Microbiol Resour Announc. 2021 Aug 26;10(34):e0055121. ‎
  • ‎45. Kokernot RH, Mcintosh BM, Worth CB. Ndumu virus, a hitherto unknown agent, isolated from culicine ‎mosouitoes collected in northern Natal. Union of South Africa. Am J Trop Med Hyg. 1961 May;10:383-6. ‎
  • ‎46. Pisano MB, Dantur MJ, Ré VE, Díaz LA, Farías A, Sánchez Seco MP, et al. Cocirculation of Rio Negro Virus ‎‎(RNV) and Pixuna Virus (PIXV) in Tucumán province, Argentina. Trop Med Int Health. 2010 Jul;15(7):865-8. ‎
  • ‎47. Pisano MB, Oria G, Beskow G, Aguilar J, Konigheim B, Cacace ML, et al. Venezuelan equine encephalitis ‎viruses (VEEV) in Argentina: serological evidence of human infection. PLoS Negl Trop Dis. 2013 Dec ‎‎12;7(12):e2551. ‎
  • ‎48. Teige LH, Aksnes I, Røsæg MV, Jensen I, Jørgensen J, Sindre H, et al. Detection of specific Atlantic salmon ‎antibodies against salmonid alphavirus using a bead-based immunoassay. Fish Shellfish Immunol. 2020 ‎Nov;106:374- 383. ‎
  • ‎49. La Linn M, Gardner J, Warrilow D, Darnell GA, McMahon CR, Field I, et al. Arbovirus of marine mammals: ‎a new alphavirus isolated from the elephant seal louse, Lepidophthirus macrorhini. J Virol. 2001 ‎May;75(9):4103-9. ‎
  • ‎50. Travassos da Rosa AP, Turell MJ, Watts DM, Powers AM, Vasconcelos PF, Jones JW, et al. Trocara virus: a ‎newly recognized Alphavirus (Togaviridae) isolated from mosquitoes in the Amazon Basin. Am J Trop Med ‎Hyg. 2001 Jan- Feb;64(1-2):93-7. ‎
  • ‎51. Kramer LD, Chin P, Cane RP, Kauffman EB, Mackereth G. Vector competence of New Zealand mosquitoes ‎for selected arboviruses. Am J Trop Med Hyg. 2011 Jul;85(1):182-9. ‎
  • ‎52. ViralZone, Swiss Institute of Bioinformatics, Switzerland. Available at: https://viralzone.expasy.org/ ‎‎[Accessed September 18, 2021]. ‎
  • ‎53. Button JM, Mukhopadhyay S. Capsid-E2 interactions rescue core assembly in viruses that cannot form ‎cytoplasmic nucleocapsid cores. J Virol. 2021 Sep 8:JVI0106221. ‎
  • ‎54. Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF ‎Proteins. Viruses. 2017 Aug 18;9(8):228. ‎
  • ‎55. Uchime O, Fields W, Kielian M. The role of E3 in pH protection during alphavirus assembly and exit. J ‎Virol. 2013 Sep;87(18):10255-62. ‎
  • ‎56. Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein ‎functions. J Gen Virol. 2015 Sep;96(9):2483-2500. ‎
  • ‎57. Abu Bakar F, Ng LFP. Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development. ‎Viruses. 2018 Feb 9;10(2):71. ‎
  • ‎58. Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res. 2015 ‎Sep;121:59-68. ‎
  • ‎59. Şahiner F, Aygar İS. A New Era in Vaccine Technology: mRNA-Based Vaccine Design. J Mol Virol Immunol ‎‎2020; 1(3): 9-17. ‎
  • ‎60. Fros JJ, Pijlman GP. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses. ‎‎2016 Jun 11;8(6):166. ‎
  • ‎61. Myles KM, Wiley MR, Morazzani EM, Adelman ZN. Alphavirus-derived small RNAs modulate ‎pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19938-43. ‎
  • ‎62. Reichert E, Clase A, Bacetty A, Larsen J. Alphavirus antiviral drug development: scientific gap analysis and ‎prospective research areas. Biosecur Bioterror. 2009 Dec;7(4):413-27. ‎
  • ‎63. Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses. 2021 Jul 5;13(7):1307. ‎
  • ‎64. Jin J, Liss NM, Chen DH, Liao M, Fox JM, Shimak RM, et al. Neutralizing Monoclonal Antibodies Block ‎Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis. Cell Rep. 2015 ‎Dec 22;13(11):2553-2564. ‎
  • ‎65. Selvarajah S, Sexton NR, Kahle KM, Fong RH, Mattia KA, Gardner J, et al. A neutralizing monoclonal ‎antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease. PLoS Negl Trop ‎Dis. 2013 Sep 12;7(9):e2423. ‎
  • ‎66. Nowee G, Bakker JW, Geertsema C, Ros VID, Göertz GP, Fros JJ, et al. A Tale of 20 Alphaviruses; Inter-‎species Diversity and Conserved Interactions Between Viral Non-structural Protein 3 and Stress Granule ‎Proteins. Front Cell Dev Biol. 2021 Feb 11;9:625711. ‎
  • ‎67. de Thoisy B, Gardon J, Salas RA, Morvan J, Kazanji M. Mayaro virus in wild mammals, French Guiana. ‎Emerg Infect Dis. 2003 Oct;9(10):1326-9. ‎
  • ‎68. Go YY, Balasuriya UB, Lee CK. Zoonotic encephalitides caused by arboviruses: transmission and ‎epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 2014 Jan;3(1):58-77. ‎
  • ‎69. Kim DY, Reynaud JM, Rasalouskaya A, Akhrymuk I, Mobley JA, Frolov I, et al. New World and Old World ‎Alphaviruses Have Evolved to Exploit Different Components of Stress Granules, FXR and G3BP Proteins, for ‎Assembly of Viral Replication Complexes. PLoS Pathog. 2016 Aug 10;12(8):e1005810. ‎
  • ‎70. Powers AM, Roehrig JT. Alphaviruses. Methods Mol Biol. 2011;665:17-38. ‎
  • ‎71. Atkins GJ. The Pathogenesis of Alphaviruses. ISRN Virol 2013; (2013): 1–22. ‎
  • ‎72. Ferreira FCPADM, da Silva ASV, Recht J, Guaraldo L, Moreira MEL, de Siqueira AM, et al. Vertical ‎transmission of chikungunya virus: A systematic review. PLoS One. 2021 Apr 23;16(4):e0249166. ‎
  • ‎73. Pouch SM, Katugaha SB, Shieh WJ, Annambhotla P, Walker WL, Basavaraju SV, et al.; Eastern Equine ‎Encephalitis Virus Transplant Transmission Investigation Team. Transmission of Eastern Equine Encephalitis ‎Virus From an Organ Donor to 3 Transplant Recipients. Clin Infect Dis. 2019 Jul 18;69(3):450-458. ‎
  • ‎74. Hoad VC, Speers DJ, Keller AJ, Dowse GK, Seed CR, Lindsay MD, et al. First reported case of transfusion-‎transmitted Ross River virus infection. Med J Aust. 2015 Mar 16;202(5):267-70. ‎
  • ‎75. Appassakij H, Silpapojakul K, Promwong C, Rujirojindakul P. The Potential Impact of Chikungunya Virus ‎Outbreaks on Blood Transfusion. Transfus Med Rev. 2020 Jan;34(1):23-28. ‎
  • ‎76. Carpentier KS, Morrison TE. Innate immune control of alphavirus infection. Curr Opin Virol. 2018 ‎Feb;28:53-60. ‎
  • ‎77. Long KM, Heise MT. Protective and Pathogenic Responses to Chikungunya Virus Infection. Curr Trop Med ‎Rep. 2015 Mar;2(1):13-21. ‎