Published October 5, 2022 | Version v1
Journal article Open

From sprawling to parasagittal locomotion in Therapsida: A preliminary study of historically collected museum specimens

  • 1. Ruhr-Universität Bochum, Bochum, Germany
  • 2. Eberhard Karls Universität, Tübingen, Germany

Description

Therapsids covered the entire spectrum of terrestrial locomotion from sprawling to parasagittal. Switching between sprawling and more erect locomotion may have been possible in earlier taxa. First, the axial skeleton shows little regionalization and allows lateral undulation, evolving then increasingly towards regionalization enabling dorsoventral swinging. During terrestrial locomotion, every step invokes a ground reaction force and functional loadings which the musculoskeletal system needs to accomodate. First insights into the functional loading regime of the fore- and hindlimb skeleton and the body stem of therapsids presented herein are based on the assessment and preliminary measurements of the historical collection of therapsids exhibited in the Paleontological Collection of Eberhard Karls Universität Tübingen, Germany. The specimens included are the archosaur Hyperodapedon sanjuanensis, the early synapsid Dimetrodon limbatus for comparison, and the therapsids Keratocephalus moloch, Sauroctonus parringtoni, Tetragonias njalilus, and Belesodon magnificus. The vertebral columns and ribs of the mounts were carefully assessed for original fossil material and, when preserved, ribs, sacral, and anterior caudal vertebrae were measured. The body of a tetrapod is exposed to forces as well as bending and torsional moments. To resist these functional stresses, certain musculoskeletal specializations evolved. These include: 1) compression resistant plate-like pectoral and pelvic girdle bones, 2) a vertebral column combined with tendinous and muscular structures to withstand compressive and tensile forces and moments, and 3) ribs and intercostal muscles to resist the transverse forces and torsional moments. The legs are compressive stress-resistant, carry the body weight, and support the body against gravity. Tail reduction leads to restructuring of the musculoskeletal system of the pelvic girdle.

Files

VZ_article_85989.pdf

Files (33.0 MB)

Name Size Download all
md5:7323b594147238a66b608eade3f9f300
33.0 MB Preview Download

System files (295.3 kB)

Name Size Download all
md5:f7d0135fec9986856cb6e4b489aa5c96
295.3 kB Download

Linked records

Additional details

References

  • Angielczyk KD (2004) Phylogenetic evidence for and implications of a dual origin of propaliny in anomodont therapsids (Synapsida). Paleobiology 30: 268–296. https://doi.org/10.1666/0094-8373(2004)030<0268:PEFAIO>2.0.CO;2
  • Ankel F (1962) Vergleichende Untersuchungen über die Skelettmorphologie des Greifschwanzes südamerikanischer Affen (Platyrrhina). Zeitschrift für Morphologie und Ökologie der Tiere 52: 131–170.
  • Ashley-Ross MA (1995) Patterns of hind limb motor output during walking in the salamander Dicamptodon tenebrosus with comparisons to other tetrapods. Journal of Comparative Physiology A 177: 273–285. https://doi.org/10.1007/BF00192417
  • Baier DB, Gatesy SM (2013) Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator. Journal of Anatomy 223(5): 462–473. https://doi.org/10.1111/joa.12102
  • Bakker RT (1971) Dinosaur physiology and the origins of mammals. Evolution 25(4): 636–658. https://doi.org/10.2307/2406945
  • Blob RW (2001) Evolution of the hindlimb in nonmammalian therapsids: biomechanical test of paleontological hypothesis. Paleobiology 27(1): 14–38. https://doi.org/10.1666/0094-8373(2001)0272.0.CO;2
  • Bonnan MF, Schulman J, Varadharajan R, Gilbert C, Wilkes M, Horner A, Brainerd EL (2016) Forelimb kinematics of rats using XROMM, with implications for small eutherians and their fossil relatives. PLoS ONE 11:e0149377. https://doi.org/10.1371/journal.pone.0149377
  • Brocklehurst RL, Fahn-Lai P, Regnault S, Pierce SE (2022) Musculoskeletal modelling of sprawling and parasagittal forelimbs provides insight into synapsid postural transition. iScience 25(1): 1–21. https://doi.org/10.1016/j.isci.2021.103578
  • Buchholtz EA, Yozygur ZM, Feldman A, Weaver AA, Gaudin TJ (2021) The therian sternum at the lateral somitic frontier: Evolution of a composite structure. Journal of Zoology 315(1): 19–28. https://doi.org/10.1111/jzo.12809
  • Case EC (1910) Description of a skeleton of Dimetrodon incisivus Cope. Bulletin of the American Museum of Natural History 28: 189–196.
  • Christian F (1995) Zur Biomechanik der Lokomotion vierfüßiger Reptilien (besonders der Squamata). Courier Forschungsinstitut Senckenberg, Band 180, Naturforschende Gesellschaft. Frankfurt, 58 pp.
  • Christian A, Garland J (1996) Scaling of limb proportions in monitor lizards (Squamata, Varanidae). Journal of Herpetology 30: 219–230. https://doi.org/10.2307/1565513
  • Clemente CJ, Withers PC, Thompson G, Lloyd DG (2011) Evolution of limb bone loading and body size in varanid lizards. Journal of Experimental Biology 2011: 3013–3020.
  • Cruickshank ARI (1967) A new dicynodont genus from the Manda Formation of Tanzania (Tanganyika). Journal of Zoology, 153: 163–208. https://doi.org/10.1111/J.1469-7998.1967.TB04059.X
  • Denoth J, Gruber K, Ruder H, Keppler M (1985) Forces and torques during sports activities with high accelerations. In: Perren SM, Schneider E (Eds) Biomechanics: Current Interdisciplinary Research, International Series on Biomechanics. Martinus Nijhoff, Amsterdam, 663–668.
  • English AWM (1977) Structural correlates of forelimb function in fur seals and sea lions. Journal of Morphology 151: 325–352. https://doi.org/10.1002/jmor.1051510303
  • Farke AA, Wolff EDS, Tanke DH (2009) Evidence of combat in Triceratops. PLoS ONE 4(1): e4252. https://doi.org/10.1371/journal.pone.0004252
  • Fujiwara S (2009) A reevaluation of the manus structure in Triceratops (Ceratopsia: Ceratopsidae). Journal of Vertebrate Paleontology 29: 1136–1147.
  • Fujiwara S, Hutchinson JR (2012) Elbow joint aductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proceedings of the Royal Society of London, Series B 279: 2561–2570.
  • Fischer M (1994a) Die Lokomotion von Procavia capensis (Mammalia, Hyracoidea). Habilitationsschrift Fakultät Biologie, Universität Tübingen.
  • Fischer M (1994b) Crouched posture and high fulcrum, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia, Hyracoidea). Journal of Human Evolution 26: 501–524. https://doi.org/10.1006/JHEV.1994.1030
  • Fischer M, Lilje KE (2011) Hunde in Bewegung. Franckh Kosmos Verlags G.m.b.H. , Stuttgart.
  • Fröbisch J (2006) Locomotion in derived dicynodonts (Synapsida, Anomodontia): a functional analysis of the pelvic girdle and hind limb of Tetragonias njalilus. Canadian Journal of Earth Science 43: 1297–1308. https://doi.org/10.1139/e06-031
  • Fröbisch J, Reisz RR (2011) The postcranial anatomy of Suminia getmanovi (Synapsida: Anomodontia), the earliest known arboreal tetrapod. Zoological Journal of the Linnean Society 162: 661–698. https://doi.org/10.1111/j.1096-3642.2010.00685.x
  • Fujiwara S-I, Kuwazuru O, Inuzuka N, Yoshikawa N (2009) Relationship between scapula position and structural strength of rib cage in quadrupedal animals. Journal of Morphology, 270: 1084–1094. https://doi.org/10.1002/jmor.10744
  • Gatesy SM (1990) Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16(2): 170–186. https://doi.org/10.1017/S0094837300009866
  • Gatesy SM (1997) An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion. Journal of Morphology 234(2): 197–212. https://doi.org/10.1002/(SICI)1097-4687(199711)234:2<197::AID-JMOR6>3.0.CO;2-9
  • Gebauer E (2007) Phylogeny and Evolution of the Gorgonopsia with a special reference to the skull and skeleton of GPIT/Re/7113 ("Ailurognathus?" parringtoni). PhD Thesis. Geowissenschaftliche Fakultät, University of Tübingen, Tübingen.
  • Gebauer E (2014) Re-assessment of the taxonomic position of the specimen GPIT/RE/7113 (Sauroctonus parringtoni comb. nov., Gorgonopsia). In: Kammerer C, Angielczyk KD, Fröbisch J (Eds) Early Evolutionary History of the Synapsida. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6841-3_12
  • Gregory WK (1926) The skeleton of Moschops capensis Broom, a dinocephalian reptile from the Permian of South Africa. Bulletin of the American Museum of Natural History 56: 179–251. http://hdl.handle.net/2246/1323
  • Hohn B (2011) Walking with the shoulder of giants: Biomechanical conditions in the tetrapod shoulder girdle as basis for sauropod shoulder reconstruction. In: Klein N, Remes K, Gee CT, and Sander M (eds.) Biology of the Sauropod dinosaurs. Indiana University Press.
  • Hohn-Schulte B, Preuschoft H, Witzel U, Distler-Hoffmann C (2013) Biomechanics and functional preconditions for terrestrial lifestyle in basal tetrapods, with spevial consideration of Tiktaalik roseae. Historical Biology 25: 167–181.
  • Hotton N (1991) The nature and diversity of synapsids: prologue to the origin of mammals. In: Schultze H-P, Trueb L (Eds) Origins of the Higher Groups of Tetrapods. Cornell University Press, Ithaca, N.Y. 598–634.
  • Huene F von (1931) Beitrag zur Kenntnis der Fauna der Südafrikanischen Karooformation. Geologische und Paläontologische Abhandlungen 18: 159–227.
  • Huene F von (1942) Die Anomodontier des Ruhuhu-Gebietes in der Tübinger Sammlung. Palaeontographica Abteilung A 94: 154–184.
  • Huene F von (1935–42) Die fossilen Reptilien des Südamerikanischen Gondwanalandes – Ergebnisse der Sauriergrabungen in Südbrasilien 1928/29. C.H. Beck'sche Verlagsbuchhandlung, Munich, 375 pp.
  • Jenkins FA Jr. (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. Journal of Zoology 165: 303–315. https://doi.org/10.1111/j.1469-7998.1971.tb02189.x
  • Jenkins FA Jr (1974) The movement of the shoulder in claviculate and aclaviculate mammals. Journal of Morphology 144: 71–84. https://doi.org/10.1002/jmor.1051440105
  • Jenkins FA Jr, Goslow GE Jr (1983) The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exemanthicus). Journal of Morphology 175: 195–216. https://doi.org/10.1002/jmor.1051750207
  • Jones KE, Dickson BV, Angielczyk KD, Pierce SE (2021) Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution. Current Biology 31(9): 1883–1892. https://doi.org/10.1016/j.cub.2021.02.009
  • Kemp TS (1978) Stance and gait in the hindlimb of a therocephalian mammal-like reptile. Journal of Zoology 186: 143–161. https://doi.org/10.1111/j.1469-7998.1978.tb03362.x
  • Kemp TS (1980) Aspects of the structure and functional anatomy of the Middle Triassic cynodont Luangwa. Journal of Zoology 191: 193–239. https://doi.org/10.1111/j.1469-7998.1980.tb01456.x
  • Kemp TS (1982) Mammal-Like Reptiles and the Origin of Mammals. Academic Press, London UK.
  • Kielan-Jawaroska Z, Gambaryan PP (1994) Postcranial anatomy and habits of asian multituberculate mammals. Fossils and Strata Monograph Series 36: 1–92.
  • King GM (1981) The functional anatomy of a Permian dicynodont. Philosophical Transactions of the Royal Society of London, Series B, 291: 243–322. https://doi.org/10.1098/rstb.1981.0001
  • King GM (1985) The postcranial skeleton of Kingoria nowacki (von Huene) (Therapsida: Dicynodontia). Zoological Journal of the Linnean Society 84: 263–298. https://doi.org/10.1111/j.1096-3642.1985.tb01801.x
  • Klima M (1987) Early development of the shoulder girdle and sternum in marsupials (Mammalia, Metatheria). Advances in Anatomy, Embryology and Cell Biology, Vol. 109, Springer, Berlin.
  • Kuschel T (1994) Vergleichende Funktionell-morphologische Untersuchungen der Vorderextremitäten von Ohren- und Hundsrobben (Otariidae und Phocidae). Diplom-Arbeit Fakultät für Biologie, RUB, Bochum, Germany.
  • Lai PH, Biewener AA, Pierce SE (2018) Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967). Journal of Anatomy 232: 383–406.
  • Loitsch C (1993) Kinematische Untersuchungen über den Galopp von Pferden (Equus caballus). Doctoral Thesis, Fakultät für Biologie, RUB, Bochum, Germany.
  • Mayerl CJ, Brainerd EL, Blob RW (2016) Pelvic girdle mobility of cryptodire and pleurodire turtles during walking and swimming. Journal of Experimental Biology 219(17): 2650–2658. https://doi.org/10.1242/jeb.141622
  • McElroy EJ, Wilson R, Biknevicius AR, Reilly SM (2014) A comparative study of single-leg ground reaction forces in running lizards. Journal of Experimental Biology 217: 735–742. https://doi.org10/1242/jeb.095620
  • Mickoleit G (2005) Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Pfeil, München, Germany.
  • Nickel R, Schummer A, Seiferle E (1968) Anatomie der Haustiere Bd. I: Bewegungsapparat. Verlag Parey, Berlin.
  • Norman JR, Frazer FC (1963) Riesenfische, Wale und Delphine. Verlag Parey, Berlin.
  • Nyakatura J, Andrada E, Curth S, Fischer MS (2013) Bridging "Romer's gap": Limb mechanics of an extant belly-dragging lizard inform debate on tetrapod locomotion during the Early Carboniferous. Evolutionary Biology 41: 175–190. https://doi.org/10.10007/sll692-013-9266-z
  • Otero A, Gallina PA, Herrera Y (2010) Pelvic musculature and function of Caiman latirostris. Herpetological Journal 20: 173–184. https://www.ingentaconnect.com/contentone/bhs/thj/2010/00000020/00000003/art00008#expand/collapse
  • Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin.
  • Pauwels F (1980) Biomechanics of the locomotor apparatus. Completely revised and enlarged, including seven new chapters. Springer, Berlin.
  • Perry S (2010) Atmungsorgane. In: Westheide & Rieger, Spezielle Zoologie, Wirbel- oder Schädeltiere. Spectrum, Heidelberg, 127–141.
  • Peters A, Preuschoft H (1984) External biomechanics of leaping in Tarsius and its morphological and kinematic consequences. In: Niemitz C (Ed.) Biology of Tarsiers. Fischer-Verlag, Stuttgart, New York 227–255.
  • Preuschoft H (1976) Funktionelle Anpassung evoluierender Systeme. Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft. Waldemar Kramer-Verlag, Frankfurt, 98–117.
  • Preuschoft H (2022) Understanding Body Shapes in Animals. Springer, Berlin.
  • Preuschoft H, Fritz M (1977) Mechanischen Beanspruchungen im Bewegungsapparat von Springpferden. In: Nachtigall W (Ed. ) Physiology of Movement – Biomechanics; Bewegungsphysiologie-Biomechanik. Fortschritte der Zoologie 24: 75–98, Fischer-Verlag, Stuttgart.
  • Preuschoft H, Demes B (1984) Biomechanics of brachiation. In: Preuschoft H, Chivers DJ, Brockelmann W, Creel N (Eds.) , The Lesser Apes. Edinburgh Univ. Press., Edinburgh, 96–118.
  • Preuschoft H, Gudo M (2006) Die Schultergürtel von Wirbeltieren. Biomechanische Überlegungen zu den Bauprinzipien des Wirbeltierkörpers und zur Fortbewegung der Tetrapoden. Zentralblatt für Geologie und Paläontologie, Teil II, 339–361, Schweizerbart, Stuttgart.
  • Preuschoft H, Reif W, Loitsch C, Tepe E (1991) The function of labyrinthodont teeth: Big teeth in shallow jaws. In: Schmitt-Kittler N, Vogel K (Eds.), Constructional Morphology and Evolution. 151–171, Springer-Verlag, Berlin/Heidelberg.
  • Preuschoft H, Schmidt M, Hayama S, Okada M (2003) The influence of three-dimensional movements of the forelimbs on the shape of the thorax and ist importance on erect body posture. In: Franzen JL (Ed.) , Walking Upright. Courier Forschungs-Institut Senckenberg 243: 9–24.
  • Preuschoft H, Distler C, Witzel U, Sick H (2005) Ribs and rib cages in terrestrial vertebrates. Their mechanical function and stressing, analysed with the aid of FESA. Journal of Vertebrate Paleontology 25(3)A: 101.
  • Preuschoft H, Witzel U, Hohn B, Schulte D, Distler C (2007) Biomechanics of locomotion and body structure in varanids with spezial emphasis on the forelimbs. In: Horn HG, Boehme, Krebs WU (Eds.), Advances in Monitor Research III, Mertensiella: 59–78, Chimaera-Buchhandelsgesellschaft, Frankfurt a. M.
  • Ray S (2006) Functional and evolutionary aspects of the postcranial anatomy of dicynodonts (Synapsida, Therapsida). Palaeontology 49(6): 1263–1286. https://doi.org/10.1111/j.1475-4983.2006.00597.x
  • Reilly SM, Delancey MJ (1997) Sprawling locomotion in the lizard Sceloporus clarkia: the effects of speed on gait, hindlimb kinematics, and axial bending during walking. Journal of Zoology 243: 417–433. https://doi.org/10.1111/J.1469-7998.1997.TB02791.X
  • Reilly SM, Elias JA (1998) Locomotion in Alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm. Journal of Experimental Biology 201: 2559–2574. https://doi.org/10.1242/jeb.201.18.2559
  • Ren L, Butler M, Miller C, Paxton H, Schwerda D, Fischer MS, Hutchinson JR (2008) The movements of limb segments and joints during locomotion in African and Asian elephants. The Journal of Experimental Biology 211: 2735–2751. https://doi.org/10.1242/jeb.018820
  • Romer AS (1923) Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the American Museum of Natural History 48: 533–552. https://hdl.handle.net/2246/1307
  • Romer AS (1927) Notes of the Permo-Carboniferous reptile Dimetrodon. Journal of Geology 35(8): 673–689. https://doi.org/10.1086/623462
  • Romer AS, Frick H (1966) Vergleichende Anatomie der Wirbeltiere. Parey, Berlin.
  • Russell AP, Bauer AM (2008) The appendicular locomotor apparatus of Sphenodon and normal-limbed squamates. In: Gans C, Parsons TS (Eds) Biology of the Reptilia, volume 21. Academic Press, New York, 465 pp.
  • Schmidt M (2001) Zur Evolution der Fortbewegung der Primaten. Doctoral thesis, Biologisch-Pharmazeutische Fakultät der Universität Jena.
  • Schmidt M, Fischer M (2002) Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates, Lemuridae). American Journal of Physical Anthropology 111: 245–262. https://doi.org/10.1002/(SICI)1096-8644(200002)111:2<245::AID-AJPA9>3.0.CO;2-3
  • Schmidt M, Voges D, Fischer M (2002) Shoulder movement during quadrupedal locomotion in arboreal primates. Zeitschrift für Morphologie und Anthropologie 83: 235–242. https://doi.org/10.1127/zma/83/2002/235
  • Schmidt M, Mehlhorn M, Fischer MS (2016) Shoulder girdle rotation, forelimb movement and the influence of carapace shape on locomotion in Testudo hermanni (Testudinidae). Journal of Experimental Biology 219(17): 2693–2703. https://doi.org/10.1242/jeb.137059
  • Snyder RC (1954) The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. The American Journal of Anatomy 95(1): 1–45. https://doi.org/10.1002/aja.1000950102
  • Suzuki D, Chiba K, Tanaka Y, Hayashi S (2011) Myology of crocodiles III: pelvic girdle and hindlimb. Fossils (The Palaeontological Society of Japan) 90: 37–60.
  • Walker WF (1971) A structural and functional analysis of walking in the turtle, Chrysemys picta marginata. Journal of Morphology 134(2): 195–214. https://doi.org/10.1002/jmor.1051340205
  • Walter LR (1986) The limb posture of kannemeyeriid dicynodonts: functional and ecological considerations. In: Padian K (Ed.) The Beginning of the Age of Dinosaurs. Cambridge University Press, Cambridge, UK, 89–97.
  • Werneburg I, Böhme M (2018) .The paleontological collection Tübingen. In: Beck L.A., Joger U. (ed.) Paleontological Collections of Germany, Austria, and Switzerland. Springer, Berlin, S. 505–512.
  • Witte H, Preuschoft H, Recknagel S (1991) Human body proportions on the basis of biomechanical principles. Zeitschrift für Morphologie und Anthropologie 78: 407–423. https://doi.org/10.1127/zma/78/1991/407
  • Witte H, Lesch C, Preuschoft H, Loitsch C (1995) Die Gangarten der Pferde. Sind Schwingungsmechanismen entscheidend? Federschwingungen bestimmen den Trab und den Galopp. Pferdeheilkunde 11(4): 265–272.
  • Witte H (1996) Beiträge zur Funktionellen Anatomie und Biomechanik elastischer Elemente im Bewegungsapparat. Habilitationsschrift Medizinische Fakultät der RUB, Bochum.
  • Witte H, Preuschoft H, Fischer M (2002) The importance of the evolutionary heritage of locomotion on flat ground in small mammals for the development of arboreality. In: Okada M, Preuschoft H (Eds.) Arboreal Locomotor Adaptation in Primates and its Relevance to Human Evolution. Zeitschrift für Morphologie und Anthropologie 83(2/3), 221–233. https://doi.org/10.1127/zma/83/2002/221