Published December 1, 2021 | Version v1
Journal article Open

Real-time performance evaluation of BGSLibrary algorithms for intelligent surveillance

  • 1. LATSI Laboratory, Electronics Department, University of Saad Dahleb/Blida 1 University, Blida, Algeria
  • 2. Department of Electronics, University of Saad Dahleb/Blida 1 University, Blida, Algeria

Description

Background subtraction is the first and basic stage in video analysis and smart surveillance to extract moving objects. In fact, the background subtraction library (BGSLibrary) was created by Andrews Sobral in 2012, which currently combines 43 background subtraction algorithms from the most popular and widely used in the field of video analysis. Each algorithm has its own characteristics, strengths and weaknesses in extracting moving objects. The evaluation allows the identification of these characteristics and helps researchers to design the best methods. Unfortunately, the literature lacks a comprehensive evaluation of the algorithms included in the library. Accordingly, the present work will evaluate these algorithms in the BGSLibrary through the segmentation performance, execution time and processor, so as to, achieve a perfect, comprehensive, real-time evaluation of the system. Indeed, a background modeling challenge (BMC) dataset was selected using the synthetic video with the presence of noise. Results are presented in tables, columns and foreground masks.

Files

26 25122.pdf

Files (954.1 kB)

Name Size Download all
md5:30bd24d0a95e85385b46a437daaa578b
954.1 kB Preview Download