There is a newer version of the record available.

Published September 22, 2022 | Version v1
Dataset Open

Learned models : Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features

  • 1. CESBIO (CNES/CNRS/UPS/IRD/INRAe)

Description

Learned models (Gaussian Processes, Random Forest, Multilayer Perceptron and Lightweight Temporal Self-Attention models) for each region based on the classification data set DS-A with seed 0 (see description here). Each model is learned in an eco-climatic region.

Model GP non spatial  GP spatial (sum) GP spatial (product)
 
data_20210511-141111_model_20220621-155521
data_20210511-141111_model_20220411-144241
data_20210511-141111_model_20220413-162100

 

Model MLP non spatial MLP spatial LTAE non spatial LTAE spatial
 
data_20210511-141111_model_20220225-142000
data_20210511-141111_model_20220312-124400
data_20210511-141111_model_20220207-123103
data_20210511-141111_model_20220208-111338

 

Model RF non spatial RF spatial
 
data_20210511-141111_model_20211018-155521
data_20210511-141111_model_20211018-144241

 

For further details see section VI-C of the pre-print article "Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features ". This article is available here.

The implementation of the models is available in the open source repository.

Files

data_20210511-141111_model_20211018-144241.zip

Files (15.0 GB)

Name Size Download all
md5:b68005c6841f9717eee428e820101b23
477.3 MB Preview Download
md5:164cbac550169db593049442424918eb
473.8 MB Preview Download
md5:335dc8d2331725a65228367b9ce3e499
9.0 MB Preview Download
md5:306d8f1883e23a662aa506ee57b7b9e2
9.0 MB Preview Download
md5:b3f7ab0f346bfc2ee57a70aa647a40ad
5.9 MB Preview Download
md5:6e3ad6954a6a6ffb2a859feb05274e84
5.9 MB Preview Download
md5:f58d70b734396777f2766efb0fb82865
5.3 GB Preview Download
md5:51c9d79119db498ff8170c2f2fd8677f
4.4 GB Preview Download
md5:6f88d8a8f2055f333e6166bf41b92340
4.4 GB Preview Download