Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum
Creators
- 1. Plasmodium RNA Biology Group, Pasteur Institute, Paris, Paris, 75015, France
- 2. CNRS ERL9195, Paris, 75015, France
Description
Background: The maintenance, regulation, and dynamics of heterochromatin in the human malaria parasite, Plasmodium falciparum, has drawn increasing attention due to its regulatory role in mutually exclusive virulence gene expression and the silencing of key developmental regulators. The advent of genome-wide analyses such as chromatin-immunoprecipitation followed by sequencing (ChIP-seq) has been instrumental in understanding chromatin composition; however, even in model organisms, ChIP-seq experiments are susceptible to intrinsic experimental biases arising from underlying chromatin structure.
Methods: We performed a control ChIP-seq experiment, re-analyzed previously published ChIP-seq datasets and compared different analysis approaches to characterize biases of genome-wide analyses in P. falciparum.
Results: We found that heterochromatic regions in input control samples used for ChIP-seq normalization are systematically underrepresented in regard to sequencing coverage across the P. falciparum genome. This underrepresentation, in combination with a non-specific or inefficient immunoprecipitation, can lead to the identification of false enrichment and peaks across these regions. We observed that such biases can also be seen at background levels in specific and efficient ChIP-seq experiments. We further report on how different read mapping approaches can also skew sequencing coverage within highly similar subtelomeric regions and virulence gene families. To ameliorate these issues, we discuss orthogonal methods that can be used to characterize bona fide chromatin-associated proteins.
Conclusions: Our results highlight the impact of chromatin structure on genome-wide analyses in the parasite and the need for caution when characterizing chromatin-associated proteins and features.
Files
openreseurope-2-16303.pdf
Files
(1.8 MB)
Name | Size | Download all |
---|---|---|
md5:720cb9b8a51bcb60d85dd9512efe50e0
|
1.8 MB | Preview Download |
Additional details
References
- Duraisingh MT, Skillman KM (2018). Epigenetic variation and regulation in malaria parasites. Annu Rev Microbiol. doi:10.1146/annurev-micro-090817-062722
- Cortés A, Deitsch KW (2017). Malaria Epigenetics. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a025528
- Bryant JM, Baumgarten S, Dingli F (2020). Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite. Mol Syst Biol. doi:10.15252/msb.20209569
- Shang X, Wang C, Fan Y (2022). Genome-wide landscape of ApiAP2 transcription factors reveals a heterochromatin-associated regulatory network during blood-stage development. Nucleic Acids Res. doi:10.1093/nar/gkac176
- Carrington E, Cooijmans RHM, Keller D (2021). The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite. iScience. doi:10.1016/j.isci.2021.102444
- Josling GA, Russell TJ, Venezia J (2020). Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. doi:10.1038/s41467-020-15026-0
- Gardner MJ, Hall N, Fung E (2002). Genome sequence of the human malaria parasite. Nature. doi:10.1038/nature01097
- De Bruin D, Lanzer M, Ravetch JV (1994). The polymorphic subtelomeric regions of chromosomes contain arrays of repetitive sequence elements. Proc Natl Acad Sci U S A. doi:10.1073/pnas.91.2.619
- Freitas-Junior LH, Bottius E, Pirrit LA (2000). Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of. Nature. doi:10.1038/35039531
- Deitsch KW, Del Pinal A, Wellems TE (1999). Intra-cluster recombination and var transcription switches in the antigenic variation of. Mol Biochem Parasitol. doi:10.1016/s0166-6851(99)00062-6
- Langmead B, Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods. doi:10.1038/nmeth.1923
- Landt SG, Marinov GK, Kundaje A (2012). ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. doi:10.1101/gr.136184.111
- Teytelman L, Özaydin B, Zill O (2009). Impact of chromatin structures on DNA processing for genomic analyses. PLoS One. doi:10.1371/journal.pone.0006700
- Xu J, Kudron MM, Victorsen A (2021). To mock or not: a comprehensive comparison of mock IP and DNA input for ChIP-seq. Nucleic Acids Res. doi:10.1093/nar/gkaa1155
- Zanghì G, Vembar SS, Baumgarten S (2018). A Specific PfEMP1 Is Expressed in Sporozoites and Plays a Role in Hepatocyte Infection. Cell Rep. doi:10.1016/j.celrep.2018.02.075
- Gómez-Díaz E, Yerbanga RS, Lefèvre T (2017). Epigenetic regulation of clonally variant gene expression during development in Anopheles gambiae. Sci Rep. doi:10.1038/srep40655
- Marinov GK, Wang J, Handler D (2015). Pitfalls of mapping high-throughput sequencing data to repetitive sequences: Piwi's genomic targets still not identified. Dev Cell. doi:10.1016/j.devcel.2015.01.013
- Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. doi:10.1093/bioinformatics/btp324
- Dobin A, Davis CA, Schlesinger F (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics. doi:10.1093/bioinformatics/bts635
- Brancucci NMB, Bertschi NL, Zhu L (2014). Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe. doi:10.1016/j.chom.2014.07.004
- Leinonen R, Sugawara H, Shumway M (2011). The sequence read archive. Nucleic Acids Res. doi:10.1093/nar/gkq1019
- Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. doi:10.1093/bioinformatics/btu170
- (2001). PlasmoDB: An integrative database of the genome. Tools for accessing and analyzing finished and unfinished sequence data. The Plasmodium Genome Database Collaborative. Nucleic Acids Res. doi:10.1093/nar/29.1.66
- Li H, Handsaker B, Wysoker A (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics. doi:10.1093/bioinformatics/btp352
- Zhang Y, Liu T, Meyer CA (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. doi:10.1186/gb-2008-9-9-r137
- Fraschka SA, Filarsky M, Hoo R (2018). Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe. doi:10.1016/j.chom.2018.01.008
- Quinlan AR (2014). BEDTools: The Swiss-Army Tool for Genome Feature Analysis.. Curr Protoc Bioinformatics. doi:10.1002/0471250953.bi1112s47
- Ramírez F, Ryan DP, Grüning B (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. doi:10.1093/nar/gkw257
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. doi:10.1007/978-3-319-24277-4
- Pedersen BS, Quinlan AR (2018). Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics. doi:10.1093/bioinformatics/btx699
- Robinson JT, Thorvaldsdóttir H, Winckler W (2011). Integrative genomics viewer. Nat Biotechnol. doi:10.1038/nbt.1754