Published September 22, 2022 | Version v1
Journal article Open

AN EFFICIENT POINT-OF-INTEREST RECOMMENDATION FOR LOCATION-BASED SOCIAL NETWORKS SYSTEM WITH SPATIO-TEMPORAL MODEL

  • 1. Research scholar, Department of CSE, Annamalai University, Annamalai, Tamil Nadu, India.
  • 2. Research Guide, Assistant Professor, Department of CSE, FEAT, Annamalai University, India.
  • 3. HOD & Professor, Department of Cyber security & IOT, St. Ann's College of Engineering and Technology, Chirala, India.

Description

ABSTRACT:

The problem of personalized next point-of-interest (POI) recommendation is significant and of practical value in location-based social networks (LBSNs). Twitter together with other online social networks has begun to collect hundreds of millions of check-ins, which capture the spatial and temporal information of user movements and interests. Due to the sparsity of data about check-in, POI recommendations remain a challenging problem. An efficient point-of-interest recommendation system with Upstream Spatiotemporal Topic Model (USTTM) for LBSNs is proposed in this paper. This recommendation system contains purpose prediction phase that classifying the POIs in spatio-temporal database based on purpose and constructing a purpose ranking model to model, the selection of user’s intended purpose for the trip. Second phase is scoring of each candidate POI that considers the properties of spatial and temporal information when calculating the score.  USTTM is used in this system to model and analyze the spatio-temporal aspect of check-in data that can discover a user’s choice of region. Extensive experiments were conducted and the results demonstrate that the recommendation accuracy of the model outperforms the state-of-the-art POI recommendation models with good runtime performance. In quantitative analysis, effectiveness of USTTM in terms of accuracy of POI recommendation and accuracy of user and time prediction are evaluated and results show that the USTTM achieves better performance than the state-of-the-art models.

Files

V17I09A89.pdf

Files (482.5 kB)

Name Size Download all
md5:337ab3e9c3918d840c622c9243b3b22c
482.5 kB Preview Download