Rumbo a la generación de inoculantes en polvo a base de Pseudomonas putida KT2440
Creators
- 1. Grupo "Ecology and Survival of Microorganisms", Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
- 2. Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
- 3. Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
- 4. Laboratorio de Fisiología Microbiana de la Interacción Microorganismo-Hospedero, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
- 5. Grupo "Ecology and Survival of Microorganisms", Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México; Facultad de Ciencias Biológicas, Licenciatura en Biotecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México.
Description
RESUMEN
La adición de fertilizantes nitrogenados, pesticidas y herbicidas en los cultivos agrícolas, ha traído enormes consecuencias para el ambiente y la salud de los organismos terrestres. Las bacterias promotoras del crecimiento de plantas podrían ser una alternativa para evitar el uso de esos productos sin arriesgar o disminuir los rendimientos de los cultivos. Pseudomonas putida KT2440 es una bacteria capaz de biodegradar compuestos orgánicos y también de promover el crecimiento de plantas; especialmente bajo condiciones de estrés ambiental. Por esta razón, esta bacteria ha sido seleccionada para el diseño de inoculantes de segunda generación. Los inoculantes de segunda generación en la actualidad están en formulaciones líquidas que requieren de refrigeración para mantenerlas estables. Es deseable contar con formulaciones que no requieran energía para su almacenamiento y transporte, por lo que las formulaciones en polvo serían las más apropiadas para mantener la estabilidad hasta su aplicación a un bajo costo. Para conseguir esto se requieren estudios de la tolerancia a la desecación de las bacterias de interés y conocer cómo podemos potenciar la supervivencia de las bacterias benéficas bajo condiciones de estrés por disminución de la actividad de agua. En este trabajo se ha revisado el panorama general del conocimiento que se tiene sobre la supervivencia de P. putida KT2440 a la desecación ambiental y la desecación por liofilización, la ayuda por protectores, la función de la membrana bacteriana, así como algunos genes clave que podrían estar implicados en la tolerancia a la desecación de esta bacteria.
ABSTRACT
The addition of nitrogen fertilizers, pesticides and herbicides in agricultural crops has brought enormous consequences for the environment and the health of terrestrial organisms. Plant growth-promoting bacteria could be an alternative to avoid the use of these products without risking or reducing crop yields. Pseudomonas putida KT2440 is a bacterium capable to biodegradate organic compounds and also able to promote plant growth; especially under conditions of environmental stress. For this reason, this bacterium has been selected for the design of “second generation” inoculants. The latter require refrigeration to keep them stable. It is desirable to have formulations that do not require energy for storage and transport, therefore powder formulations would be the most appropriate to maintain stability until application at low cost. To achieve this, studies of the tolerance to desiccation of the bacteria of interest are required, so we need to know how to enhance the survival of beneficial bacteria under stress conditions. In this work, the general knowledge on the survival of P. putida KT2440 against environmental desiccation and lyophilization has been reviewed. Aspects, such as the increased survival by protecting compounds, the function of the bacterial membrane, as well as some key genes that could be involved in the tolerance to desiccation of this bacterium, were also covered.
Files
5) Alonso-Torres et al., 2022.pdf
Files
(353.4 kB)
Name | Size | Download all |
---|---|---|
md5:e2e5303460ec8bc627994caf4237b7e3
|
353.4 kB | Preview Download |
Additional details
Identifiers
Related works
- Is identical to
- Journal article: https://www.aytbuap.mx/aytbuap-727/rumbo-a-la-generaci%C3%B3n-de-inoculantes-en-polvo-a-base-de-pseudomonas-putida (URL)
References
- Patel R. The Long Green Revolution. J Peasant Stud [Internet]. 2013 Jan 1;40(1):1–63. Available from: https://doi.org/10.1080/03066150.2012.719224
- Pazos-Rojas LA, Marín-Cevada V, Elizabeth Y, García M, Baez A. Uso de microorganismos benéficos para reducir los daños causados por la revolución verde. Rev Iberoam Ciencias. 2016;3(7):72–85.
- Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR. Effects of Pesticides on Environment - Plant, Soil and Microbes: Implications in Crop Science. In: Hakeem KR, Akhtar MS, Abdullah SNA, editors. Cham: Springer International Publishing; 2016. p. 253–69. Available from: https://doi.org/10.1007/978-3-319-27455-3_13
- Choudhury PP. Transformation of Herbicides in the Environment BT - Herbicide Residue Research in India. In: Sondhia S, Choudhury PP, Sharma AR, editors. Singapore: Springer Singapore; 2019. p. 415–42. Available from: https://doi.org/10.1007/978-981-13-1038-6_15
- Choudri BS, Charabi Y, Ahmed M. Pesticides and Herbicides. Water Environ Res [Internet]. 2018 Oct 1;90(10):1663–78. Available from: https://doi.org/10.2175/106143018X15289915807362
- Dich J, Zahm SH, Hanberg A, Adami H-O. Pesticides and cancer. Cancer Causes Control [Internet]. 1997;8(3):420–43. Available from: https://doi.org/10.1023/A:1018413522959
- Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ Toxicol Pharmacol [Internet]. 2018;63:103–14. Available from: https://www.sciencedirect.com/science/article/pii/S1382668918303077
- Davoren MJ, Schiestl RH. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis [Internet]. 2018 Oct 8;39(10):1207–15. Available from: https://doi.org/10.1093/carcin/bgy105
- Jabłońska-Trypuć A, Wydro U, Wołejko E, Butarewicz A. Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules. 2019;24(9):1710. Available from: https://doi.org/10.3390/molecules24091710
- Kozyrovska N, Kovtunovych G, Gromosova E, Kuharchuk P, Kordyum V. Novel inoculants for an environmentally-friendly crop production. Stud Environ Sci. 1997;66(C):729–35.
- Majeed A, Muhammad Z, Ahmad H. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 2018;37(12):1599–609.
- Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J. Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol. 2017;10(1):19–21.
- Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci Total Environ [Internet]. 2020;743:140682. Available from: https://www.sciencedirect.com/science/article/pii/S0048969720342042
- Rilling JI, Acuña JJ, Nannipieri P, Cassan F, Maruyama F, Jorquera MA. Current opinion and perspectives on the methods for tracking and monitoring plant growth‒promoting bacteria. Soil Biol Biochem [Internet]. 2019;130:205–19. Available from: https://www.sciencedirect.com/science/article/pii/S003807171830422X
- Hassan MK, McInroy JA, Kloepper JW. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture. 2019; 9(7):142.
- Cardoso P, Alves A, Silveira P, Sá C, Fidalgo C, Freitas R, et al. Bacteria from nodules of wild legume species: Phylogenetic diversity, plant growth promotion abilities and osmotolerance. Sci Total Environ [Internet]. 2018;645:1094–102. Available from: https://www.sciencedirect.com/science/article/pii/S0048969718324756
- Adeleke BS, Babalola OO, Glick BR. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere [Internet]. 2021;20:100433. Available from: https://www.sciencedirect.com/science/article/pii/S2452219821001294
- Molina-Romero D, Morales-García YE, Bustillos-Cristales MR, Rodríguez-Andrade O, Santiago-Saenz Y, Muñoz-Rojas J, et al. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Rev la DES Ciencias Biológico Agropecu. 2015;17(2) (February 2016):24–34.
- Morales-García YE, Muñoz-Rojas J, Baez A, Molina-Romero D, Rivera-Urbalejo AP, Pazos-Rojas LA. Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Vol. 23. 2019. 385–410 p.
- Wei T, Lv X, Jia HL, Hua L, Xu HH, Zhou R, et al. Effects of salicylic acid, Fe(II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes. J Environ Manage. 2018;214:164–71.
- Zafar‐ul‐hye M, Naeem M, Danish S, Khan MJ, Fahad S, Datta R, et al. Effect of cadmium‐tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants. 2020;9(10):1–21.
- Akkaya Ö. Nicotiana tabacum-associated bioengineered Pseudomonas putida can enhance rhizoremediation of soil containing 2,4-dinitrotoluene. 3 Biotech. 2020;10(9):1–11.
- Pazos-Rojas LA, Rodríguez-Andrade O, Catalina Muñoz-Arenas L, Morales-García Y, Corral Lugo A, Quintero-Hernandez V, et al. Desiccation-tolerant rhizobacteria maintain their plant growth Promoting capability after experiencing extreme water stress. J Appl Microbiol [Internet]. 2018;1(May):1–13. Available from: https://www.researchgate.net/profile/Jesus_Munoz-Rojas/publication/325094145
- Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A-C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front Plant Sci [Internet]. 2017;8:49. Available from: https://www.frontiersin.org/article/10.3389/fpls.2017.00049
- Ghosh N. Promoting Bio-fertilizers in Indian Agriculture. 2004;1–26. Available from: http://ipni.net/ipniweb/portal.nsf/0/94cfd5a0ed0843028525781c0065437e/$FILE/12%20South%20Asia.Ghosh.Promoting%20Bio-fertilizers%20in%20India%20Agri.pdf
- Morales-García YE, Baez A, Quintero-Hernández V, Molina-Romero D, Rivera-Urbalejo AP, Pazos-Rojas LA, et al. Bacterial mixtures, the future generation of inoculants for sustainable crop production. Sustainable Development and Biodiversity 23. In: Maheshwari DK, Dheeman S, editors. Field Crops: Sustainable Management by PGPR. First. Swizerland: Springer Nature Switzerland AG; 2019. p. 11–44.
- Morales-García YE, Juárez-Hernández D, Hernández-Tenorio A-L, Muñoz-Morales JM, Baez A, Muñoz-Rojas J. Inoculante de segunda generación para incrementar el crecimiento y salud de plantas de jardín. Alianzas y Tendencias BUAP [Internet]. 2020;5(20):136–54. Available from: https://drive.google.com/file/d/1hnGVyOqfJdrs8F-LIXeE5FrL1H6MP6nU/view
- Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annu Rev Microbiol. 2009;63(1):541–56.
- Pacheco I, Ferreira R, Correia P, Carvalho L, Dias T, Cruz C. Microbial consortium increases maize productivity and reduces grain phosphorus concentration under field conditions. Saudi J Biol Sci. 2021;28(1):232–7.
- Molina-Romero D, Juárez-Sánchez S, Venegas B, Ortíz-González CS, Baez A, Morales-García YE, et al. A Bacterial Consortium Interacts With Different Varieties of Maize, Promotes the Plant Growth, and Reduces the Application of Chemical Fertilizer Under Field Conditions. Front Sustain Food Syst. 2021;4(January).
- Figueredo MS, Tonelli ML, Ibáñez F, Morla F, Cerioni G, del Carmen Tordable M, et al. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol Res. 2017;197:65–73.
- Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Int J Phytoremediation. 2017;19(6):514–21.
- Madhaiyan M, Poonguzhali S, Kang BG, Lee YJ, Chung JB, Sa TM. Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil. 2010;328(1):71–82.
- Dileep Kumar BS, Berggren I, Mårtensson AM. Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil. 2001;229(1):25–34.
- Shahzad SM, Khalid A, Arif MS, Riaz M, Ashraf M, Iqbal Z, et al. Co-inoculation integrated with P-enriched compost improved nodulation and growth of Chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. 2014;1–12.
- Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales M del R, et al. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One [Internet]. 2017 Nov 8;12(11):e0187913. Available from: https://doi.org/10.1371/journal.pone.0187913
- Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D, editors. Advances in Plant Microbiome and Sustainable Agriculture: Functional Annotation and Future Challenges [Internet]. Singapore: Springer Singapore; 2020. p. 219–58. Available from: https://doi.org/10.1007/978-981-15-3204-7_10
- Vivanco-Calixto R, Molina-Romero D, Morales-García YE, Quintero-Hernández V, Munive-Hernández JA, Baez-Rogelio A, et al. Reto agrobiotecnológico: inoculantes bacterianos de segunda generación. Alianzas y Tendencias BUAP [Internet]. 2016;1(1):1–10. Available from: https://www.aytbuap.mx/publicaciones#h.26a62fnd2t88
- Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant Soil. 2014;378(1–2):1–33.
- Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv [Internet]. 1998;16(4):729–70. Available from: https://www.sciencedirect.com/science/article/pii/S0734975098000032
- Nehra V, Choudhary M. A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci. 2015;7(1):540–56.
- Muñoz-Rojas J, Morales-García YE, Baez-Rogelio A, Quintero-Hernández V, Rivera-Urbalejo AP, Pérez-y-Terrrón R. Métodos económicos para la cuantificación de microorganismos. In: Instituciones de Educación Superior La labor investigadora e innovadora en México [Internet]. Science Associated Editors L.L.C.; 2016. p. 67–82. Available from: https://www.researchgate.net/publication/312067522_Metodos_economicos_para_la_cuantificacion_de_microorganismos
- Daza A, Santamarı́a C, Rodrı́guez-Navarro DN, Camacho M, Orive R, Temprano F. Perlite as a carrier for bacterial inoculants. Soil Biol Biochem [Internet]. 2000;32(4):567–72. Available from: https://www.sciencedirect.com/science/article/pii/S0038071799001856
- Casteriano A, Wilkes MA, Deaker R. Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance. Appl Environ Microbiol. 2013;79(13):3998–4007.
- Velineni S, Brahmaprakash GP. Survival and Phosphate Solubilizing Ability of Bacillus megaterium in Liquid Inoculants under High Temperature and Desiccation Stress [Internet]. 2011 Sep 1;13(5):795–802. Available from: http://jast.modares.ac.ir/article-23-3947-en.html
- Streeter JG. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Sci Environ Manag. 2003;(1993):484–91.
- Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol. 2020;104(9):3757–70.
- Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, et al. Water Resources: Agricultural and Environmental Issues. Bioscience [Internet]. 2004 Oct 1;54(10):909–18. Available from: https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO
- Savary S, Castilla NP, Elazegui FA, Teng PS. Multiple effects of two drivers of agricultural change, labour shortage and water scarcity, on rice pest profiles in tropical Asia. F Crop Res [Internet]. 2005;91(2):263–71. Available from: https://www.sciencedirect.com/science/article/pii/S0378429004001856
- Batisani N, Yarnal B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl Geogr [Internet]. 2010;30(4):483–9. Available from: https://www.sciencedirect.com/science/article/pii/S0143622809000733
- Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B Biol Sci. 2010;365(1554):2973–89.
- Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol [Internet]. 2018;69:82–8. Available from: https://www.sciencedirect.com/science/article/pii/S0740002017300631
- Bosch J, Varliero G, Hallsworth JE, Dallas TD, Hopkins D, Frey B, et al. Microbial anhydrobiosis. Environ Microbiol [Internet]. 2021 Aug 4;n/a(n/a). Available from: https://doi.org/10.1111/1462-2920.15699
- Alpert P. The Limits and Frontiers of Desiccation-Tolerant Life1. Integr Comp Biol [Internet]. 2005 Nov 1;45(5):685–95. Available from: https://doi.org/10.1093/icb/45.5.685
- Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994;58(4):755–805.
- Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front Microbiol. 2020;11(July):1–15.
- Manzanera M. Dealing with water stress and microbial preservation. Environ Microbiol [Internet]. 2021 Jul 1;23(7):3351–9. Available from: https://doi.org/10.1111/1462-2920.15096
- Fredrickson JK, Li SW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, et al. Protein oxidation: key to bacterial desiccation resistance? ISME J [Internet]. 2008;2(4):393–403. Available from: https://doi.org/10.1038/ismej.2007.116
- Muñoz-Rojas J, Alatorre-Cruz JM, Bustillos-Cristales M del R, Morales-García YE, Hernández-Tenorio A-L, Baez-Rogelio A, et al. Multi-species formulation to improve the growth from plants semi-desertic zones [Internet]. México; MX20150 14278A, 2015. p. 1–28. Available from: https://www.researchgate.net/publication/315800535_Multi-species_formulation_to_improve_the_growth_from_plants_semi-desertic_zones
- Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloepper J, Bonilla R. Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ Sci. 2013;18(2):129–39.
- Muñoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos J. Involvement of Cyclopropane Fatty Acids in the Response of Pseudomonas putida KT2440 to Freeze-Drying. Appl Environ Microbiol. 2006;72(1):472–7.
- Pazos-Rojas LA, Muñoz-Arenas LC, Rodríguez-Andrade O, López-Cruz LE, López-Ortega O, Lopes-Olivares F, et al. Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS One [Internet]. 2019 Jul 19;14(7):e0219554. Available from: https://doi.org/10.1371/journal.pone.0219554
- Jałowiecki Ł, Krzymińska I, Górska M, Płaza G, Ratman-Kłosińska I. Effect of the freeze-drying process on the phenotypic diversity of Pseudomonas putida strains isolated from the interior of healthy roots of Sida hermaphrodita: Phenotype microarrays (PMs). Cryobiology [Internet]. 2020;96:145–51. Available from: https://www.sciencedirect.com/science/article/pii/S0011224020302327
- Wessman P, Håkansson S, Leifer K, Rubino S. Formulations for freeze-drying of bacteria and their influence on cell survival. J Vis Exp. 2013;(78):1–5.
- Shivkumar G, Kazarin PS, Strongrich AD, Alexeenko AA. LyoPRONTO: an Open-Source Lyophilization Process Optimization Tool. AAPS PharmSciTech. 2019;20(8):1–17.
- Steven L N, Shan J, Suchart C, Shawn A. K. Fundamentals of Freeze Drying. Free Pharm Food Prod. 2010;18–67.
- Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T. Survival of freeze-dried bacteria. J Gen Appl Microbiol. 2008;54(1):9–24.
- Fonseca F, Cenard S, Passot S. Freeze-Drying of Lactic Acid Bacteria BT-Cryopreservation and Freeze-Drying Protocols. In: Wolkers WF, Oldenhof H, editors. New York, NY: Springer New York; 2015. p. 477–88. Available from: https://doi.org/10.1007/978-1-4939-2193-5_24
- Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61(10):3592–7.
- Morales-García Y-E, Duque E, Rodríguez-Andrade O, de la Torre J, Martínez-Contreras R-D, Pérez R, et al. Bacterias Preservadas, una Fuente Importante de Recursos Biotecnológicos. Bio Tecnol. 2010;14(2):11–29.
- Kupletskaya MB, Netrusov AI. Viability of lyophilized microorganisms after 50-year storage. Microbiology. 2011;80(6):850–3.
- Strasser S, Neureiter M, Geppl M, Braun R, Danner H. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol. 2009;107(1):167–77.
- Zhao G, Zhang G. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol [Internet]. 2005 Aug 1;99(2):333–8. Available from: https://doi.org/10.1111/j.1365-2672.2005.02587.x
- Polo L, Mañes-Lázaro R, Olmeda I, Cruz-Pio LE, Medina Á, Ferrer S, et al. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. J Appl Microbiol [Internet]. 2017 Jun 1;122(6):1603–14. Available from: https://doi.org/10.1111/jam.13465
- Sahgal M, Jaggi V. Rhizobia: Culture Collections, Identification, and Methods of Preservation BT - Microbial Resource Conservation: Conventional to Modern Approaches. In: Sharma SK, Varma A, editors. Cham: Springer International Publishing; 2018. p. 175–97. Available from: https://doi.org/10.1007/978-3-319-96971-8_6
- Regenhardt D, Heuer H, Heim S, Fernandez DU, Strömpl C, Moore ERB, et al. Brief report Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol. 2002;4:912–5.
- Marqués S, Ramos JL. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol. 1993;9(5):923–9.
- Molina L, Ramos C, Duque E, Ronchel MC, Garcı́a JM, Wyke L, et al. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem. 2000 Mar;32(3):315–21.
- D'Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett. 2010;312(1):84–92.
- Martins Dos Santos VAP, Heim S, Moore ERB, Strätz M, Timmis KN. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol. 2004;6(12):1264–86.
- Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol [Internet]. 2002 Dec 1;4(12):799–808. Available from: https://doi.org/10.1046/j.1462-2920.2002.00366.x
- Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, et al. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol. 2016;18(10):3403–24.
- Costa-Gutierrez SB, Lami MJ, Santo MCC-D, Zenoff AM, Vincent PA, Molina-Henares MA, et al. Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA. Appl Microbiol Biotechnol [Internet]. 2020;104(10):4577–92. Available from: https://doi.org/10.1007/s00253-020-10516-z
- Choudhary DK, Johri BN. Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiol Res. 2009;164(5):493–513.
- Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri D V, Vivanco JM, et al. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep [Internet]. 2010 Jun 1;2(3):381–8. Available from: https://doi.org/10.1111/j.1758-2229.2009.00091.x
- Muñoz-Rojas J, Morales-García YE, Juárez-Hernández D, Fuentes-Ramírez LE, Munive-Hernández JA. Formulación de un inoculante multiespecies para potenciar el crecimiento de plantas [Internet]. México; MX2013007978A, 2013. p. 1–36. Available from: https://www.researchgate.net/publication/309550250
- Manzanera M, Castro AG De, Tøndervik A, Strøm AR, Tunnacliffe A. Hydroxyectoine Is Superior to Trehalose for Anhydrobiotic Engineering of Pseudomonas putida KT2440. Appl Environ Microbiol. 2002;68(9):4328–33.
- Van De Mortel M, Halverson LJ. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol Microbiol [Internet]. 2004 May 1;52(3):735–50. Available from: https://doi.org/10.1111/j.1365-2958.2004.04008.x
- Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V, Nybroe O. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol [Internet]. 2015;15(1):202. Available from: https://doi.org/10.1186/s12866-015-0542-1
- Vriezen JAC, De Bruijn FJ, Nüsslein K. Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol. 2007;73(11):3451–9.
- Laskowska E, Kuczyńska-Wiśnik D. New insight into the mechanisms protecting bacteria during desiccation. Curr Genet [Internet]. 2020;66(2):313–8. Available from: https://doi.org/10.1007/s00294-019-01036-z
- Rodríguez-Andrade O, Corral-Lugo A, Morales-García YE, Quintero-Hernández V, Rivera-Urbalejo AP, Molina-Romero D, et al. Identification of Klebsiella variicola T29A genes involved in tolerance to desiccation. Open Microbiol J. 2019;13(1):256–67.
- Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Minireview Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol. 2018;11(2):277–300.
- Uritani M, Takai M, Yoshinaga K. Protective Effect of Disaccharides Drying under Vacuum. J Biochem. 1995;779:774–9.
- Shirkey B, Mcmaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, et al. Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res. 2003;31(12):2995–3005.
- Stokell JR, Steck TR. Viable but Nonculturable Bacteria [Internet]. eLS. 2012. (Major Reference Works). Available from: https://doi.org/10.1002/9780470015902.a0000407.pub2
- Conway T, K. G. Microarray expression profiling: capturing a genome-wide portrait of the transcriptome. Mol Microbiol [Internet]. 2003 Feb 1;47(4):879–89. Available from: https://doi.org/10.1046/j.1365-2958.2003.03338.x
- Buck A, Oliver JD. Survival of spinach-associated Helicobacter pylori in the viable but nonculturable state. Food Control [Internet]. 2010;21(8):1150–4. Available from: https://www.sciencedirect.com/science/article/pii/S095671351000037X
- Orruño M, Kaberdin VR, Arana I. Survival strategies of Escherichia coli and Vibrio spp.: contribution of the viable but nonculturable phenotype to their stress-resistance and persistence in adverse environments. World J Microbiol Biotechnol [Internet]. 2017;33(3):45. Available from: https://doi.org/10.1007/s11274-017-2218-5
- Vriezen JAC, de Bruijn FJ. Appearance of Membrane Compromised, Viable but Not Culturable and Culturable Rhizobial Cells as a Consequence of Desiccation [Internet]. Biological Nitrogen Fixation. 2015. p. 975–90. (Wiley Online Books). Available from: https://doi.org/10.1002/9781119053095.ch96
- López-Lara LI, Pazos-Rojas LA, López-Cruz LE, Morales-García YE, Quintero-Hernández V, De La Torre J, et al. Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. Ann Microbiol. 2020;70(1).
- Zhang Y-M, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol [Internet]. 2008;6(3):222–33. Available from: https://doi.org/10.1038/nrmicro1839
- Bernal P, Muñoz-Rojas J, Hurtado A, Ramos JL, Segura A. A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol [Internet]. 2007 May 1;9(5):1135–45. Available from: https://doi.org/10.1111/j.1462-2920.2006.01236.x
- Rowlett VW, Mallampalli VKPS, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W, et al. The impact of membrane phospholipid alterations in Escherichia coli on cellular function. J Bacteriol [Internet]. 2017;199(13):1–22. Available from: http://jb.asm.org/content/199/13/e00849-16.full.pdf%0Ahttp://jb.asm.org/
- Filiatrault MJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol [Internet]. 2011;14(5):579–86. Available from: https://www.sciencedirect.com/science/article/pii/S136952741100107X
- Skvortsov TA, Azhikina TL. A review of the transcriptome analysis of bacterial pathogens in vivo: Problems and solutions. Russ J Bioorganic Chem [Internet]. 2010;36(5):550–9. Available from: https://doi.org/10.1134/S106816201005002X
- Korem M, Gov Y, Rosenberg M. Global gene expression in Staphylococcus aureus following exposure to alcohol. Microb Pathog [Internet]. 2010;48(2):74–84. Available from: https://www.sciencedirect.com/science/article/pii/S0882401009001776
- Tie K, N. VRZ, L. GS. Global Gene Expression Analysis of the Heat Shock Response in the Phytopathogen Xylella fastidiosa. J Bacteriol [Internet]. 2006 Aug 15;188(16):5821–30. Available from: https://doi.org/10.1128/JB.00182-06
- Estrella D, José-Juan R-H, Jesús de la T, Patricia D-C, Jesús M-R, Juan-Luis R. The RpoT Regulon of Pseudomonas putida DOT-T1E and Its Role in Stress Endurance against Solvents. J Bacteriol [Internet]. 2007 Jan 1;189(1):207–19. Available from: https://doi.org/10.1128/JB.00950-06
- Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLOS Comput Biol [Internet]. 2017 May 18;13(5):e1005457. Available from: https://doi.org/10.1371/journal.pcbi.1005457
- Kollanoor Johny A, Frye JG, Donoghue A, Donoghue DJ, Porwollik S, McClelland M, et al. Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front Microbiol [Internet]. 2017;8:1828. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2017.01828
- Ranjith K, Arunasri K, Reddy GS, Adicherla H, Sharma S, Shivaji S. Global gene expression in Escherichia coli, isolated from the diseased ocular surface of the human eye with a potential to form biofilm. Gut Pathog [Internet]. 2017;9(1):15. Available from: https://doi.org/10.1186/s13099-017-0164-2
- Saliba A-E, C Santos S, Vogel J. New RNA-seq approaches for the study of bacterial pathogens. Curr Opin Microbiol [Internet]. 2017;35:78–87. Available from: https://www.sciencedirect.com/science/article/pii/S136952741730005X
- Hör J, Gorski SA, Vogel J. Bacterial RNA Biology on a Genome Scale. Mol Cell [Internet]. 2018;70(5):785–99. Available from: https://www.sciencedirect.com/science/article/pii/S1097276517309802
- Gulez G, Altıntaş A, Fazli M, Dechesne A, Workman CT, Tolker-Nielsen T, et al. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials. Microbiologyopen [Internet]. 2014 Aug 1;3(4):457–69. Available from: https://doi.org/10.1002/mbo3.180
- Gülez G, Dechesne A, Workman CT, Smets BF. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress. Appl Environ Microbiol [Internet]. 2012 Feb 1;78(3):676–83. Available from: https://doi.org/10.1128/AEM.06150-11
- Halverson LJ. Role of Alginate in Bacterial Biofilms. In: Rehm BHA, editor. Alginates: Biology and Applications [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 135–51. Available from: https://doi.org/10.1007/978-3-540-92679-5_6
- Woo-Suk C, Martijn van de M, Lindsey N, Gabriela N de G, Xiaohong L, J. HL. Alginate Production by Pseudomonas putida Creates a Hydrated Microenvironment and Contributes to Biofilm Architecture and Stress Tolerance under Water-Limiting Conditions. J Bacteriol [Internet]. 2007 Nov 15;189(22):8290–9. Available from: https://doi.org/10.1128/JB.00727-07
- Nielsen L, Li X, Halverson LJ. Cell–cell and cell–surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol [Internet]. 2011 May 1;13(5):1342–56. Available from: https://doi.org/10.1111/j.1462-2920.2011.02432.x
- Gülez G, Dechesne A, Smets BF. The Pressurized Porous Surface Model: An improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials. J Microbiol Methods [Internet]. 2010;82(3):324–6. Available from: https://www.sciencedirect.com/science/article/pii/S016770121000206X