Published September 29, 2022 | Version 1.0.0
Dataset Open

Packaging Industry Anomaly DEtection (PIADE) Dataset

  • 1. Galdi
  • 2. Statwolf Data Science
  • 3. University of Padova

Description

PIADE dataset contains data from five industrial packaging machines:

  • Machine s_1: from 2020-01-01 14:00:00 to 2021-12-31 13:00:00
  • Machine s_2: from 2020-06-17 08:00:00 to 2021-12-31 07:00:00
  • Machine s_3: from 2020-10-07 12:00:00 to 2022-01-01 23:00:00
  • Machine s_4: from 2020-01-01 01:00:00 to 2022-01-01 23:00:00
  • Machine s_5: from 2020-01-20 08:00:00 to 2022-01-01 12:00:00

## Raw Data

Each row represents a production interval, with the following schema:

  • interval_start: start of the production interval    
  • equipment_ID: equipment identifier    
  • alarm: alarm code of the active stop reason, if it occurred     
  • type: idle, production, downtime, performance_loss or scheduled_downtime    
  • start: start of the production interval    
  • end: end of the production interval    
  • elapsed: duration of the production interval    
  • pi: input packages    
  • po: output packages    
  • speed: speed (packages per hour)

There are 133 different types of alerts, and 429394 rows.
 

## Sequences (1h) data

For each piece of equipment, we define sequences of length = 1 hour and we aggregate raw interval data as follows:

  • 'equipment_ID': machine identifier
  • '#changes': changes in machine state
  • '%downtime': time spent in 'downtime' state
  • '%idle': time spent in 'idle' state
  • '%performance_loss': time spent in 'performance loss' state
  • '%production': time spent in production
  • '%scheduled_downtime': time spent in scheduled downtime
  • 'count_sum': sum of all alarm occurrences
  • 'A_<XXX>': counter of alarm <XXX> occurrences
  • '<state1>/<state2>': number of transitions from <state1> to <state2>

 

Notes

The collection of this dataset has been partially supported by the Regione Veneto project VIR2EM (VIrtualization and Remotization for Resilient and Efficient Manufacturing, Virtualizzazione e remotizzazione per una manifattura efficiente e resiliente)

Files

raw_data.csv

Files (61.0 MB)

Name Size Download all
md5:a0fc01fbfc9414b0f754cd0a8e70c429
49.3 MB Preview Download
md5:5edf8a6806f272228d522c76825d955c
11.7 MB Preview Download

Additional details

Funding

EUHubs4Data – European Federation of Data Driven Innovation Hubs 951771
European Commission