TrueFace: a Dataset for the Detection of Synthetic Face Images from Social Networks
Creators
- 1. University of Trento
- 2. U-Hopper
Description
TrueFace is a first dataset of social media processed real and synthetic faces, obtained by the successful StyleGAN generative models, and shared on Facebook, Twitter and Telegram.
Images have historically been a universal and cross-cultural communication medium, capable of reaching people of any social background, status or education. Unsurprisingly though, their social impact has often been exploited for malicious purposes, like spreading misinformation and manipulating public opinion. With today's technologies, the possibility to generate highly realistic fakes is within everyone's reach. A major threat derives in particular from the use of synthetically generated faces, which are able to deceive even the most experienced observer. To contrast this fake news phenomenon, researchers have employed artificial intelligence to detect synthetic images by analysing patterns and artifacts introduced by the generative models. However, most online images are subject to repeated sharing operations by social media platforms. Said platforms process uploaded images by applying operations (like compression) that progressively degrade those useful forensic traces, compromising the effectiveness of the developed detectors. To solve the synthetic-vs-real problem "in the wild", more realistic image databases, like TrueFace, are needed to train specialised detectors.
Files
Files
(220.6 GB)
Name | Size | Download all |
---|---|---|
md5:41f8878c75e51b20b87866ab0889568e
|
220.6 GB | Download |