Published August 31, 2022 | Version v1
Dataset Open

Temporal data from camera trap captures of raccoons (Procyon lotor) and coyote (Canis latrans) across urban-rural gradient Michigan 2015-2020

  • 1. University of Michigan-Ann Arbor

Description

Temporal data and trap success for raccoons (Procyon lotor) and coyotes (Canis latrans) across an urban-rural gradient in Michigan, from 2015 to 2020. These data are associated with the article "Temporal refuges of a subordinate carnivore vary across rural-urban gradient" in the journal Ecology and Evolution. 

Notes

None (we used R to process the temporal data, and ArcGIS pro to general kernel densities from the trap success data).

Funding provided by: NSF
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100016620
Award Number: 2140322

Files

DMP17_Coy_st.csv

Files (726.9 kB)

Name Size Download all
md5:08e5518e7259644f3240bcd80407c21c
5.3 kB Preview Download
md5:ee41813aa959f35fcf343812c657b6c2
1.2 kB Preview Download
md5:471ead730e355979d181a1f3c715fb48
28.7 kB Preview Download
md5:7379fe165aeb61d15a12d046c06022d6
5.0 kB Preview Download
md5:6c0a95270bf58911b7d597424fe21092
1.3 kB Preview Download
md5:4984abcb2fc40a27e15b62f61ee3f932
68.7 kB Preview Download
md5:df404673bf4c753fa62d07d0f9914c73
16.9 kB Preview Download
md5:88e1e6d295e409903b57a1d042d6c6ba
446 Bytes Preview Download
md5:de7e8ab9a1e82d339c6f099f8616b2ce
114.1 kB Preview Download
md5:9e49f968101ac7d90f683e379937b4e9
2.7 kB Preview Download
md5:5ee87845ee3c34673e0976bd02e5b8c3
983 Bytes Preview Download
md5:7eb5737f003b8851638d85dfd5e885e8
8.3 kB Preview Download
md5:770d9feaca71426e0e367cc78a8be42e
8.9 kB Preview Download
md5:e2adc9117132bc6d7de129e2c120a7b6
546 Bytes Preview Download
md5:7758de9f7886babba5656b2da2a4f387
11.7 kB Preview Download
md5:8d9ce77b61b202ba5bbd764f689d2f1b
5.3 kB Preview Download
md5:9f6824832fdeff20b7b644d4d370cae0
1.3 kB Preview Download
md5:6ef5724c48f90bc2e8668eea54c56e10
10.7 kB Preview Download
md5:ae6d9f1be7dfb989a0946fa9d77fe231
2.2 kB Preview Download
md5:f83c57e8094f7d586da9d1cbe73433fb
1.2 kB Preview Download
md5:c3d45c1fdf6303b532c5d9e81172da7f
5.2 kB Preview Download
md5:63c07bee3845bb04687376b7355dcce8
1.1 kB Preview Download
md5:6390e566eb10af96a722d9da3353be21
11.0 kB Preview Download
md5:de5670ef2731bd778ed04d3ddb43c7c5
651 Bytes Preview Download
md5:af876f78a3aeecfe55f601b84cb2ff80
169.5 kB Preview Download
md5:b2c0a0b496989b410c89994c51d5090a
2.6 kB Preview Download
md5:ea89e38e6d0175ad1b1c8cde17094b4e
1.6 kB Preview Download
md5:d2c13c6c57c76b99c5d4ef094ccd752a
76.7 kB Preview Download
md5:6766d2e69782762f82eaf993a0d48808
6.0 kB Preview Download
md5:97a5b2df0e426b758738c2084524ee7c
527 Bytes Preview Download
md5:3bd399435f66f6c44bd8c527df0c5b61
84.0 kB Preview Download
md5:43d6d97a8edbf63bc5298528ed2d68b3
5.9 kB Preview Download
md5:faaf1082c98f33007f3b53386cf41a14
1.7 kB Preview Download
md5:ee235e3c08f0f2364886a16e48eb289a
11.9 kB Preview Download
md5:e5672329d7c987ffeba149e34b32d11b
7.2 kB Preview Download
md5:e04bb3b7bf0018f49bcc5d644efebd9e
2.1 kB Preview Download
md5:e0f8d95d9293a3e0520cd1fc4b2b32aa
43.6 kB Preview Download