Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published August 16, 2022 | Version v1
Dataset Open

Annual carbon density and annual forest probability maps

  • 1. University of Copenhagen
  • 2. Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang, China
  • 3. Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, CE Orme des Merisiers, Gif sur Yvette, France
  • 4. Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
  • 5. CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain CREAF, Cerdanyola del Vallès, Spain
  • 6. ISPA, UMR 1391, INRA Nouvelle-Aquitaine, Bordeaux Villenave d'Ornon, France
  • 7. Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
  • 8. Department of Geosciences, Texas Tech University, Lubbock, TX, 79409, USA
  • 9. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
  • 10. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
  • 11. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Description

The annual carbon density (file name is GBRF+year) shows aboveground woody biomass and uses boosted regression trees, which were trained with a static global benchmark map of carbon density of woody vegetation for 2018, using MODIS (MCD43A4 7 bands; NDII, EV12, MCD43A3 shortwave albedo) and STRM data. The carbon density was mapped at 1-ha spatial grid cells and the unit is MgC/ha.

The forest probability maps (file name is LT_nbr_paramset01_fitted.+year) were created from annual MODIS data at the resolution of 500m x 500m. The forest maps take values ranging from 0 to1, and the probability shows the likeliness if a pixel belongs to the forest (1) or non-forest (0) class. The higher the value, the higher the probability that the pixel is forest land.

Notes

Citation: Tong, X., Brandt, M., Yue, Y. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun 11, 129 (2020). https://doi.org/10.1038/s41467-019-13798-8

Files

GBRf_2002.tif

Files (1.7 GB)

Name Size Download all
md5:e6cd173b31c220597bbde996aa0bc670
55.8 MB Preview Download
md5:d716a3835ae5454feb4a78b52075742f
55.8 MB Preview Download
md5:4f4430298177be99e3b00618e44c4122
55.8 MB Preview Download
md5:c1d3547517e66bc62397b92c8bc86a9e
55.8 MB Preview Download
md5:ae141a223bc6a6ef32c243204088918e
55.8 MB Preview Download
md5:fc1f934dc24789267edaa4fede49f90a
55.8 MB Preview Download
md5:9c17b3e709c44cdeca2819d36c6631ab
55.8 MB Preview Download
md5:dfa26877a13298a9e0cfb845d6445714
55.8 MB Preview Download
md5:a1ee4e8a99dc5c5b409b27c02da4f1fa
55.8 MB Preview Download
md5:2f8531d0dd5e7748266f6722fd155bc4
55.8 MB Preview Download
md5:11ab2854ddaf58d2e4ef6a9d7b57d35f
55.8 MB Preview Download
md5:1d59aa92bdf2ac90f31b64373a803702
55.8 MB Preview Download
md5:d752623cae1ecb84ff6e0884c1dbce4e
55.8 MB Preview Download
md5:330526850d4d8522e57d2dcb1f6eba4d
55.8 MB Preview Download
md5:4766df52ecfca7ffffdda02475df0363
55.8 MB Preview Download
md5:715dd7ac747a528b768cdd5ddc34df0a
55.9 MB Preview Download
md5:93e86a74ed09082c81e89858f9c444c1
55.8 MB Preview Download
md5:7b8b161d6901eb3074b62cad094a9f6a
55.8 MB Preview Download
md5:e0e838cbc88a7f82954e199d83184bc3
55.8 MB Preview Download
md5:5c530952617af4f078c3c612aea43926
55.9 MB Preview Download
md5:355daae18bf02690f7b0dc3b67f9c6a7
55.9 MB Preview Download
md5:d52b1021ba94ef5fdd6fe2c734df67e3
55.8 MB Preview Download
md5:764ec433cf60e53753c8c3179543d7ac
55.8 MB Preview Download
md5:6c2287f0d612ae1b06e2d4ff2f995f17
55.8 MB Preview Download
md5:5885008ba011b7c4dd5a17e1437b22d2
55.8 MB Preview Download
md5:ac1362a84afbfbb3e58400bb5bb24edd
55.8 MB Preview Download
md5:7bbedcb62a130ff9d7adf19d43b38b8d
55.8 MB Preview Download
md5:2481323b73d62e15686a0913142be5b1
55.8 MB Preview Download
md5:013b4f7c2f2ec8c7264e05f73f8a5d90
55.8 MB Preview Download
md5:c91ea1ebf9677c440a05ef5a9449ae6a
55.8 MB Preview Download
md5:6179cfefef06df5a372484739d657b40
55.9 MB Preview Download